The University of British Columbia

Final Examination - December 2009

Mathematics 263

Section 102

Closed book examination	Time: 2.5 hours		
Last Name:	First:	${\bf Signature} \ _$	
Student Number			

Special Instructions:

- Be sure that this examination has 12 pages. Write your name at the top of each page.
- You are allowed to bring into the exam one $8\frac{1}{2} \times 11$ formula sheet filled on both sides. No calculators or any other aids are allowed.
- In case of an exam disruption such as a fire alarm, leave the exam papers in the room and exit quickly and quietly to a pre-designated location.

Rules governing examinations

- Each candidate must be prepared to produce, upon request, a UBCcard for identification.
- Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions.
- No candidate shall be permitted to enter the examination room after the expiration of one-half hour from the scheduled starting time, or to leave during the first half hour of the examination.
- Candidates suspected of any of the following, or similar, dishonest practices shall be immediately dismissed from the examination and shall be liable to disciplinary action.
- (a) having at the place of writing any books, papers or memoranda, calculators, computers, sound or image players/recorders/transmitters (including telephones), or other memory aid devices, other than those authorized by the examiners;
 - (b) speaking or communicating with other candidates; and
- (c) purposely exposing written papers to the view of other candidates or imaging devices. The plea of accident or forgetfulness shall not be received.
- Candidates must not destroy or mutilate any examination material; must hand in all examination papers; and must not take any examination material from the examination room without permission of the invigilator.
- Candidates must follow any additional examination rules or directions communicated by the instructor or invigilator.

1	20
2	15
3	20
4	20
5	10
6	15
Total	100

- 1. Suppose the function T(x,y,z) describes the temperature at a point (x,y,z) in space, with T(1,1,1)=10, and $\nabla T(1,1,1)=2\hat{i}-\hat{j}+\hat{k}$. Suppose also that the position at time t of a particle moving through space is $(\sqrt{1+t},\cos t,e^t)$.
 - (a) Compute the directional derivative of T at (1,1,1), in the direction of the vector $\hat{i}+2\hat{j}+3\hat{k}$.

(b) At (1,1,1), in what direction does the temperature decrease most rapidly?

(c) Compute the rate of change of temperature experienced by the particle at time t=0.

(d) Write an equation for the tangent plane to the temperature level surface T(x,y,z)=10 at (1,1,1).

2. Use Lagrange multipliers to find the points on the surface $z = x^2 + 2y^2$ that are closest to the point (0,0,2). (Hint: Minimize the distance squared rather than the distance.)

December 2009	Math 263	Name:	Page 5 of 12 pages
Extra space (if a	needed)		

- (a) Calculate the curl of \hat{F} .
- (b) Find a function h(x, y, z) such that the vector field

$$\hat{G}(x,y,z) = \langle h(x,y,z), xe^y, (z+1)e^z \rangle$$

is conservative. Find a function g(x, y, z) such that $\hat{G}(x, y, z) = \nabla g(x, y, z)$.

- (c) Evaluate the integral $\int_C \hat{G} \cdot d\hat{r}$, where the curve C is parametrized by $x(t) = t^2$, $y(t) = t^2$ and $z(t) = t^3$ for $0 \le t \le 1$.
- (d) Evaluate the integral $\int_C \hat{F} \cdot d\hat{r}$, where C is as in (c). (Hint: Use the results from (b) and (c).)

December 2009	Math 263	Name:		Page 7 of 12 pages
Extra space (if a	needed)			

- 4. Let C be the closed curve oriented counterclockwise consisting of the line segment from (0,0) to (1,0), the line segment from (1,0) to (1,1) and the part of the parabola $y=x^2$ from (1,1) to (0,0). Find $\int_C \hat{F} \cdot d\hat{r}$ where $\hat{F}(x,y)=xy\,\hat{i}+x^2\,\hat{j}$ by two methods:
 - (a) By calculating the line integral directly.
 - (b) By using Green's Theorem.

December 2009	Math 263	Name: _	 Page 9 of 12 pages
Extra space (if r	needed)		

5. Use Stokes' Theorem to evaluate $\int_C \hat{F} \cdot d\hat{r}$, where C is the curve in which the plane y=1 intersects the sphere $x^2+y^2+z^2=5$, oriented clockwise when viewed from the positive y-axis, and

$$\hat{F}(x,y,z) = \left(-y^2 + e^{x^2}\right)\,\hat{i} + \ln(y^2 + y)\,\hat{j} + \left(x + \sqrt{z^2 + 1}\right)\,\hat{k}.$$

6. Let $\hat{F}(x,y,z) = \langle z \tan^{-1}(y^2), z^3 \ln(x^2+1), z \rangle$. Find the flux of \hat{F} across the part of the paraboloid $x^2 + y^2 + z = 2$ that lies above the plane z = 1 and is oriented upwards.

December 2009	Math 263	Name:	Page 12 of 12 pages
Extra space (if	needed)		