## Math 265, Fall 2008 <br> Final Exam, December 5th

## Instructions

- Answer all problems in the solution booklet. Work done on the question book will not be graded.
- Show all your work. A correct answer without intermediate steps will receive no credit.
- No calculators or other aids, or notes or textbooks are allowed.
- Write your name and student number on every solution booklet you use.
- Put your student ID on your desk so it can easily be inspected.
- This exam has 5 problems. Answer all problems.
- There is a table of Laplace transforms on the last page.

1. [50 POINTS] This problem has ten parts, each worth five points.
i. Find the Laplace transform of the function shown in the graph.

ii. Solve the initial value problem for $y(t) . a$ is a positive constant.

$$
y^{\prime}+\frac{2}{a} y=t \quad y(0)=1
$$

iii. Solve the initial value problem for $y(t)$ and draw a clear graph of the solution, indicating the period and amplitude.

$$
y^{\prime \prime}+6 y=0 \quad y(0)=1, y^{\prime}(0)=1 .
$$

iv. Solve the initial value problem for $y(t)$ and draw a clear graph of the solution, indicating the period and amplitude.

$$
y^{\prime \prime}+6 y=\delta(t-1) \quad y(0)=0, y^{\prime}(0)=0 .
$$

v. Solve the initial value problem for $\vec{x}(t)$.

$$
\vec{x}^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \vec{x} \quad \vec{x}(0)=\binom{-1}{1}
$$

vi. Give an example of a $2 \times 2$ matrix $A$ such that the system $\vec{x}^{\prime}=A \vec{x}$ has a centre point at $(0,0)$.
vii. An object of mass $m$ is dropped from a height $h$. Let the velocity of the object at time $t$ be $v(t)$ with $v(0)=0$. The only forces acting on the object are due to gravity $\left(F_{G}=m g\right)$ and drag ( $F_{D}=k v$ ) where the drag coefficient, $k$, is a positive constant.
(i) In terms of meters, seconds, and kilograms, what are the units of $k$ ?
(ii) Find the terminal velocity of the object.
(iii) Find the distance the object has travelled after time $t$.
viii. Find the inverse Laplace transform of

$$
F(s)=\frac{2 s+1}{s^{2}+s+5}
$$

ix. A spherical raindrop evaporates at a rate proportional to its surface area. Initially, the radius of the raindrop is 3 mm . After one minute, the radius of the raindrop is 2 mm . At what time does the raindrop completely disappear?
x. Find the general solution of the differential equation. $f(t)$ is a unknown function of time.

$$
y^{\prime}(t)+f(t)=y(t) .
$$

Hint: your solution will be in terms of an integral.
2. [12 POINTS] Consider the forced LCR circuit, which can be described by:

$$
Q^{\prime \prime}(t)+R Q^{\prime}(t)+\frac{1}{C} Q=F \cos (\omega t), \quad Q(0)=0, \quad Q^{\prime}(0)=1,
$$

where $\mathrm{Q}(\mathrm{t})$ is the charge at time $t, \mathrm{R}$ the resistance, C the capacitance, and the inductance $L=1$. The forcing has amplitude $F$ and frequency $\omega$.

On the following page you will find plots of different solutions $Q(t)$ for various values of $R$, $C, F$, and $\omega$, corresponding in no particular order to:
A. $R=0, C=1 / 64, F=1, \omega=8 \Rightarrow$
$Q^{\prime \prime}(t)+64 Q(t)=\cos (8 t), \quad Q(0)=0, \quad Q^{\prime}(0)=1$.
B. $R=0.8, C=1 / 64, F=0, \omega$ not relevant $\Rightarrow$
$Q^{\prime \prime}(t)+0.8 Q^{\prime}(t)+64 Q(t)=0, \quad Q(0)=0, \quad Q^{\prime}(0)=1$.
C. $R=0.8, C=1 / 64, F=1, \omega=8 \Rightarrow$ $Q^{\prime \prime}(t)+0.8 Q^{\prime}(t)+64 Q(t)=\cos (8 t), \quad Q(0)=0, \quad Q^{\prime}(0)=1$.
D. $R=17, C=1 / 64, F=0, \omega$ not relevant $\Rightarrow$
$Q^{\prime \prime}(t)+17 Q^{\prime}(t)+64 Q(t)=0, \quad Q(0)=0, \quad Q^{\prime}(0)=1$.
E. $R=0, C=1 / 64, F=0, \omega$ not relevant $\Rightarrow$
$Q^{\prime \prime}(t)+64 Q(t)=0, \quad Q(0)=0, \quad Q^{\prime}(0)=1$.
F. $R=0, C=1 / 64, F=1, \omega=7 \Rightarrow$
$Q^{\prime \prime}(t)+64 Q(t)=\cos (7 t), \quad Q(0)=0, \quad Q^{\prime}(0)=1$.
In your solution booklet, draw the following table and complete the entries to match the equations and their graphs:

| Equation | Graph |
| :---: | :---: |
| A |  |
| B |  |
| C |  |
| D |  |
| E |  |
| F |  |

## Hints:

1. You don't need to solve each problem completely.
2. Look at the plots carefully and don't forget to check the axis scales.

## Problem 2, continued


3. [13 POINTS] Consider a servomechanism that models an automatic pilot. Such a mechanism applies torque to the steering control shaft so that a plane or boat will follow the prescribed course. If we let $y(t)$ be the true direction (i.e. the angle) of the craft at time $t$ and $g(t)$ be the desired direction at time $t$, then

$$
e(t)=y(t)-g(t)
$$

denotes the error or deviation between the desired direction and the true direction.
Assume that the servomechanism can measure the error $e(t)$ and feed back to the steering shaft a component of torque that is proportional to $e(t)$, but opposite in sign (see figure). The rotational analogue of Newton's second law states that: (moment of inertia $I$ ) $\times($ angular acceleration $)=($ total torque). For our servomechanism this becomes:

$$
I y^{\prime \prime}(t)=-k e(t),
$$

where $k$ is a positive proportionality constant.


Using the method of Laplace transforms, determine the error $e(t)$ for the automatic pilot if the steering shaft is initially at rest in the zero direction $\left(y(0)=0, y^{\prime}(0)=0\right)$ and the desired direction is given by $g(t)=t$.
4. [13 POINTS] Consider

$$
\vec{x}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-4 & -a
\end{array}\right) \vec{x}, \quad \vec{x}(0)=\binom{1}{1} .
$$

$a$ is an unknown constant.
(a) Solve this system with $a=3$.
(b) Solve this system with $a=-5$.
(c) Find all possible values of $a$ for which $(0,0)$ is an unstable spiral point.
5. [12 POINTS] Consider the following problem with $\omega$ a positive constant.

$$
y^{\prime \prime}+9 y=4 \cos \omega t \quad y(0)=y^{\prime}(0)=0 .
$$

(a) Solve this problem assuming that $\omega \neq 3$.
(b) Solve this problem when $\omega=3$.
(c) Draw a graph of the solution to the problem when $\omega=2.9$. HINT: Rewrite your solution in a different form using $\cos A-\cos B=2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{B-A}{2}\right)$.

## END OF EXAM

