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Problem 1: Multiple Choice Questions: Circle ONE correct answer (a, b, c, d, or
e). There is no partial credit in this question.

1: Consider the (discontinuous) function described by

f(t) =















0 t < 1
−(2t + 1) 1 ≤ t ≤ 2

t2 2 < t ≤ 4
0 4 < t

This function can be written in terms of step functions as follows:

(a) f(t) = −(u1(t) + u2(t))(2t + 1) + (u2(t) + u4(t))t
2

(b) f(t) = −(2t + 1)u1(t) + (t + 1)2u2(t) − t2u4(t)

(c) f(t) = −(2t + 1)u1(t) + t2u2(t)

(d) f(t) = (2t + 1)u2(t) + t2u4(t)

(e) f(t) = −(2t + 1)u2(t) − t2u4(t)

2: Suppose that two solutions of a differential equation y′′ + p(t)y′ + q(t)y = 0 are y1(t) = t2 − 2t + 1 and
y2 = t − 1. Then the Wronskian of these solutions, W is

(a) W = −(t − 1)2

(b) W = 3t2 − 6t + 3

(c) W = (t − 1)(2t − 3)

(d) W = −t2 + 6t − 1

(e) W = (t − 1)3

3: To solve the ODE y′′ − y′ − 2y = t + te−t, the form of the particular solution that is needed is

(a) yp(t) = At + Bte−t

(b) yp(t) = At + B + Cte−t

(c) yp(t) = At + B + (Ct + D)e−t

(d) yp(t) = At + B + t(Ct + D)e−t

(e) yp(t) = At2 + t2(Ct + D)e−t



Dec 2010 Math 265 Name: Page 3 out of 13

4: Suppose that the current I(t) in an LRC circuit that satisfies the ODE

L
d2I

dt2
+ R

dI

dt
+

1

C
I = f(t) = 4 cos(ωdt).

Suppose that the inductance is L = 10, the capacitance is C = 0.1. The circuit is tested with various resistors
and input functions f(t) of several different driving frequencies ωd. For which of the following settings would
this circuit produce oscillations with the greatest amplitude?

(a) R = 20, ωd = 2 (b) R = 10, ωd =
√

32 (c) R = 1, ωd = 2 (d) R = 0.1, ωd = 11 (e) R = 0.1, ωd = 1.1

5: Which of the following functions is the inverse Laplace transform of F (s) =
e−2s

s2 + 4
?

(a) L−1{F (s)} =
1

2
u2(t) sin(2t − 4)

(b) L−1{F (s)} =
1

4
u2(t) sin(2t − 4)

(c) L−1{F (s)} =
1

2
u2(t) sin(2t − 2)

(d) L−1{F (s)} =
1

2
e−2t−4 sin(2t − 2)

(e) L−1{F (s)} =
1

2
e−2t sin(2t)

6: Which of the following answers corresponds to the convolution of the functions f(t) = et and g(t) = e−2t?

(a) e−t − e−2t (b) 1

3
[et − e−2t] (c) −e−3t + e−2t (d) ete−3τ (e) e2t − et
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Problem 2: Let x(t) =

[

x(t)
y(t)

]

, and consider the following systems of equations.

(a) Match each system with a corresponding phase plane diagram (circle 1 correct response: a,b,c,d, or None).

(b) For those cases that matched, draw a few arrows directly on the diagrams to indicate the direction of
increasing time along the solution curves in the xy plane. (Hint: you do not need to solve the ODEs fully
to figure out those directions.)

dx

dt
=

[

−1 2
0 1

]

x a b c d None

dx

dt
=

[

−1 2
−2 1

]

x a b c d None

dx

dt
=

[

2 1
−1 2

]

x a b c d None

dx

dt
=

[

10 2
−8 2

]

x a b c d None

dx

dt
=

[

−3 0
0 −3

]

x a b c d None
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Figure 1: Phase plane plots for Problem 2. (x is the horizontal axis, y the vertical axis in each case)
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Problem 3: Solve the following initial value problem:

dy

dx
+ xy = x, y(0) = 2
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Problem 4: Use the method of undetermined coefficients to solve the initial value problem

y′′ − 6y′ + 10y = 6 sin(2t), y(0) =
2

5
, y′(0) = 0
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Extra space (if needed)
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Problem 5:
(a) Solve the initial value problem y′′ − 3y′ + 2y = δ(t − 1), y(0) = 1, y′(0) = 1.
(b) What is the value of y at time t = 2?
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Problem 6:
Solve the system of first order ODEs given below:

dx

dt
=

[

−1 −2
1 −4

]

x, with x(0) =

[

−1
0

]
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Problem 7: For a holiday dinner, a large roast is to be cooked. At time t = 0, the roast is taken out of
the refrigerator, and its initial temperature is T (0) = 0◦ Celsius. It is left at room temperature (Eroom = 20◦

Celsius) for 1 hour. Then it is put into an oven (Eoven = 220◦ Celsius) for 1 hour. After this time, it is left at
room temperature until dinner.

Assume that Newton’s Law of Cooling is a good approximation so that the temperature of the roast T (t)
at time t > 0 satisfies

dT

dt
= k(E(t) − T ), where the ambient temperature is E(t) =







Eroom 0 ≤ t ≤ 1
Eoven 1 < t ≤ 2
Eroom 2 < t

For simplicity, assume that k = 1. Find the temperature of the roast, T (t) for t > 0.
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You may tear out this page for convenience. You do not need to submit it with the exam.

f(t) F (s) = L[f(t)]

1 1
s

eat 1
s−a

tn n!
sn+1

sin at a
s2+a2

cos at s
s2+a2

uc(t)
e−cs

s

uc(t)f(t− c) e−csF (s)

δ(t − c) e−cs

ectf(t) F (s − c)

∫ t

0 f(t − τ)g(τ) dτ F (s)G(s)


