Math 267 Final Exam Section 101 December 10, 2011 Duration: 150 minutes

Name: _

Student Number: ____

Do not open exam until so instructed.

- This exam has twenty-one pages, including this cover, and four blank pages at the end.
- One 8.5x11" double-sided page of notes is allowed. No textbooks, calculators, or other aids are allowed.
- Cell phones and other electronic devices must be switched off and left at the front of the room.
- You must remain in the exam room until the exam is over.
- Write answers in the indicated 'boxes'. Explain your work, using the back of the previous page if necessary.
- Problems are *not* organized by difficulty.
- Relax.

Rules governing all UBC examinations:

- (i) Each candidate must be prepared to produce, upon request, a Library/AMS card for identification.
- (ii) Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions.
- (iii) No candidate shall be permitted to enter the examination room after the expiration of one-half hour from the scheduled starting time, or to leave during the first half hour of the examination.
- (iv) Candidates suspected of any of the following, or similar, dishonest practices shall be immediately dismissed from the examination and shall be liable to disciplinary action.
 - Having at the place of writing any books, papers or memoranda, calculators, computers, audio or video cassette players or other memory aid devices, other than those authorized by the examiners.
 - Speaking or communicating with other candidates.
 - Purposely exposing written papers to the view of other candidates. The plea of accident or forgetfulness shall not be received.
- (v) Candidates must not destroy or mutilate any examination material; must hand in all examination papers; and must not take any examination material from the examination room without permission of the invigilator.

Pages	Marks	Score
2-3	14	
4-6	16	
7-9	16	
10-12	19	
13-15	19	
16-17	16	
Total	100	

(4 Marks)

Plot complex numbers $\alpha = 2e^{-i\frac{\pi}{6}}$ and $\beta = e^{+i\frac{3\pi}{4}}$, in the space provided. Label axes appropriately.

Problem 2

(3 Marks)

Rewrite $\cos(x)\cos(3x)$ as a simple sum of cosines.

 $\cos(x)\cos(3x) =$

Compute the sum. Write your answer in the space provided.

Part A

(3 Marks)

$$\sum_{j=-5}^{+5} (-3)^j =$$

Part B

(4 Marks)

$$\sum_{k=-\infty}^{+\infty} \left(rac{1}{2}
ight)^{|k|} =$$

For both parts of this question, consider g(x), defined only for $x \in [0, 2\pi]$,

$$g(x) = \begin{cases} 0 & \text{for } 0 \le x \le \frac{\pi}{2} \\ 1 & \text{for } \frac{\pi}{2} < x < \pi \\ 0 & \text{for } \pi \le x \le 2\pi \end{cases}$$

Part A

(2 Marks)

For $x \in [-2\pi, 2\pi]$, sketch the odd extension $g_{\text{odd}}(x)$ in the space provided,

Part B

(6 Marks)

Compute the coefficients $c_{k,\text{odd}}$ for the Fourier series of $g_{\text{odd}}(x)$.

(Continued Next Page)

(Problem 4, Part B Continued)

(8 Marks)

Solve. You may use any formula, notation or method discussed in lecture.

$$\begin{cases} \partial_t^2 u(t,x) = \partial_x^2 u(t,x) \\ u(t,0) = 0 \\ u(t,1) = 0 \\ u(0,x) = \sin(2\pi x) \\ \partial_t u(0,x) = \sin(\pi x) \end{cases}$$

u(t,x) =

Show your work. You may use any formula or shortcut discussed in lecture.

Part A

(5 Marks)

Compute the Fourier transform of,

 $f(\omega) = 3\,\operatorname{sinc}(\omega+1)$

 $\mathcal{F}\left[f(\omega)\right](t) =$

(Continued Next Page)

Part B

(6 Marks)

Compute the Fourier transform of,

$$g(t) = e^{it} e^{-t} u(t)$$

 $\mathcal{F}\left[g(t)\right](\omega) =$

(Continued Next Page)

Part C

(5 Marks)

Compute the Fourier transform of h(t),

Hint: One way to find the transform of h *starts by finding the transform of* $\frac{dh}{dt}$.

 $\mathcal{F}\left[h(t)\right](\omega) =$

(7 Marks)

Using the definition of convolution, compute,

(q * q)(x), where, q(x) = x u(x)

(q * q)(x) =

(6 Marks)

Compute $(f \circledast g)[n]$, where the discrete-time signals f[n] and g[n] are given by,

Hint: You may leave your answer in terms of g[n].

 $(f \circledast g)[n] =$

(6 Marks)

Using the definition, compute the DTFT of $x[n] = 2^{-n}u[n+2]$

 $\widehat{x}_{DT}(\omega) =$

Consider the discrete-time LTI described by the difference equation,

$$y[n] - y[n-1] = x[n] + x[n-1]$$

Part A

(7 Marks)

Use the difference equation to find the impulse response, h[n], with h[-1] = 0.

$$h[n] = \begin{cases} \\ \\ \end{cases}$$

(Continued Next Page)

Part B

(1 Marks)

Is your answer to Part A right-sided, left-sided, neither, or both?

Part C

(7 Marks)

Use the difference equation and your answer to Part B to find the system function, H(z).

$$H(z) =$$

$$ROC =$$

Consider two discrete-time LTI circuits:

Circuit $\boldsymbol{\alpha}$ is causal, with system function,

$$F(z) = \frac{1}{z - \frac{2}{3}}$$

Circuit $\boldsymbol{\beta}$ has system function,

$$G(z) = \frac{z^2}{z^2 + \frac{3}{2}z - 1}; \qquad \frac{1}{2} < |z| < 2$$

Another circuit, γ , is made by using the output of circuit α as input for circuit β .

ſ

What is the system function, H(z), of circuit γ ?

$$H(z) =$$

$$ROC =$$

(4 Marks)

Part A

(6 Marks)

Find the DFT of, a[n] = [0, 1, 0, 1]. Give your answer as a vector, fully-simplied.

$$\widehat{a}[k] = [$$
 , , ,]

Part B

(4 Marks)

Use your answer to Part A to find the DFT of b[n] = [1, 0, 1, 0].

$$\widehat{b}[k] = [$$
 , , ,]

Compute the DFT of $x[n] = \sin[\frac{\pi}{5}n]$.

Hint: Rewrite x[n] as complex exponentials.

(6 Marks)