MATHEMATICS 300 FINAL EXAM

APRIL 27, 2006. INSTRUCTORS: D. SJERVE, Z. REICHSTEIN

This is a closed book exam. You can use one $8.5^{"} \times 11^{"}$ note sheet but no books or calculators are allowed. In order to receive credit for a problem you need to show enough work to justify your answer.

Name (Please print):

Student number:

Problem	Score	Problem	Score
1			
2		6	
3		 7 	
4		 8 	

TOTAL

(6 marks) **Problem 1:** Find all complex solutions to the equation $\cos(z) = 2i\sin(z)$. Express each solution in the form z = x + yi, where x and y are real numbers. (6 marks) **Problem 2:** Answer true or false to the following statements. Give valid reasons for all your answers.

(a) $\text{Log}(z^2) = 2 \text{Log}(z)$ for every complex number z. Here Log(z) denotes the principal value of $\log(z)$.

(b) If f(z) = u(x, y) + iv(x, y) is an analytic function of z = x + iy, where u(x, y) and v(x, y) are real valued functions, then the function w(x, y) = u(x, y) + v(x, y) is harmonic.

(c) Suppose f(z) is an analytic function at $z = z_0$ and $f(z_0) = 0$. If f(z) is not identically zero in any disc centered at z_0 then $g(z) = \frac{f'(z)}{f(z)}$ has a simple pole at z_0 .

(6 marks) **Problem 3:** Find all singularities of the function $f(z) = \frac{z}{1 - \cos(z^2)}$. Determine the nature of each singularity (i.e., whether it is removable, essential or a pole). For each pole, determine its order.

(7 marks) **Problem 4:** Prove that the function $f(z) = \overline{z}^{1000}$ is not analytic in any open disc. Here, as usual, \overline{z} denotes the complex conjugate of z.

(7 marks) **Problem 5:** Suppose f(z) is an entire function such that |f(z)| < 2|z| + 3 for all complex numbers z. Show that f(z) is a polynomial of degree ≤ 1 .

(6 marks) **Problem 6:** Suppose the Laurent series for the function $f(z) = \frac{z}{(z-1)(z-2)}$ in the annulus 1 < |z| < 2 is given by $\sum_{j=-\infty}^{\infty} c_j z^j$. Find (a) c_{100} , (b) c_{-100} .

(6 marks) **Problem 7:** Evaluate
$$\int_0^{2\pi} \frac{d\theta}{5 - 3\cos(\theta)}$$
.

(6 marks) **Problem 8:** Evaluate
$$\int_0^\infty \frac{dx}{(x^2+1)^3}$$
.