MATHEMATICS 300 FINAL EXAM

APRIL 27, 2006. INSTRUCTORS: D. SJERVE, Z. REICHSTEIN

This is a closed book exam. You can use one $8.5 " \times 11^{\prime \prime}$ note sheet but no books or calculators are allowed. In order to receive credit for a problem you need to show enough work to justify your answer.

Name (Please print):
Student number:

TOTAL

(6 marks) Problem 1: Find all complex solutions to the equation $\cos (z)=2 i \sin (z)$. Express each solution in the form $z=x+y i$, where x and y are real numbers.
(6 marks) Problem 2: Answer true or false to the following statements. Give valid reasons for all your answers.
(a) $\log \left(z^{2}\right)=2 \log (z)$ for every complex number z. Here $\log (z)$ denotes the principal value of $\log (z)$.
(b) If $f(z)=u(x, y)+\imath v(x, y)$ is an analytic function of $z=x+\imath y$, where $u(x, y)$ and $v(x, y)$ are real valued functions, then the function $w(x, y)=u(x, y)+v(x, y)$ is harmonic.
(c) Suppose $f(z)$ is an analytic function at $z=z_{0}$ and $f\left(z_{0}\right)=0$. If $f(z)$ is not identically zero in any disc centered at z_{0} then $g(z)=\frac{f^{\prime}(z)}{f(z)}$ has a simple pole at z_{0}.
(6 marks) Problem 3: Find all singularities of the function $f(z)=\frac{z}{1-\cos \left(z^{2}\right)}$. Determine the nature of each singularity (i.e., whether it is removable, essential or a pole). For each pole, determine its order.
(7 marks) Problem 4: Prove that the function $f(z)=\bar{z}^{1000}$ is not analytic in any open disc. Here, as usual, \bar{z} denotes the complex conjugate of z.
(7 marks) Problem 5: Suppose $f(z)$ is an entire function such that $|f(z)|<2|z|+3$ for all complex numbers z. Show that $f(z)$ is a polynomial of degree ≤ 1.
(6 marks) Problem 6: Suppose the Laurent series for the function $f(z)=\frac{z}{(z-1)(z-2)}$ in the annulus $1<|z|<2$ is given by $\sum_{j=-\infty}^{\infty} c_{j} z^{j}$. Find (a) c_{100}, (b) c_{-100}.
(6 marks) Problem 7: Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5-3 \cos (\theta)}$.
(6 marks) Problem 8: Evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{3}}$.

