Be sure that this examination has 12 pages including this cover

The University of British Columbia
Sessional Examinations - April 2012
Mathematics 300
Introduction to Complex Variables

Name \qquad

Student Number

\qquad Signature

Instructor's Name

\qquad

Section Number

\qquad

Special Instructions:

No books, notes, or calculators are allowed.
Explain your reasoning carefully. You will be graded on the clarity of your explanations as well as on the correctness of your answers.

Rules Governing Formal Examinations

Marks

[12] 1. Express all of the following numbers in the form $a+i b$ with a and b real.
(a) $\sin [-i \log (1+\sqrt{3} i)]$
(b) $\log \left[\frac{1-\mathrm{i}}{(1+\mathrm{i})^{3}}\right]$, where $\log z$ is the principal branch of $\log z$
(c) all solutions of $\sinh z=\frac{i}{\sqrt{2}}$
[10] 2. Let $u(x, y)=2 x^{2}-2 y^{2}-3 x+y$.
(a) Show that $u(x, y)$ is a harmonic function.
(b) Find all analytic functions $f(x+i y)=u(x, y)+i v(x, y)$ with $u(x, y)=2 x^{2}-2 y^{2}-3 x+y$ and $v(x, y)$ real.
[10] 3. Find a branch of $(1+z)^{1 / 2}$ which is analytic except for $z=x \geq-1$ and find its derivative at $z=-2$.
[10] 4. Evaluate the contour integral

$$
\int_{C} \frac{d z}{(\bar{z}-1)^{2}}
$$

where C is the semicircle $|z-1|=1, \operatorname{Im} z \geq 0$ from $z=0$ to $z=2$.
[10] 5. Find all entire functions $f(z)$ that obey "there is an integer n such that $|f(z)|<|z|^{n}+1$ for all $\{z \in \mathbb{C}||z|>100\}$ ".
\qquad
[12] 6. Let

$$
f(z)=\frac{1}{(2 z-1)(z-2)}
$$

(a) Expand $f(z)$ in a Laurent series valid in an annular region that contains $z=1$. Give the region of convergence of your series.
(b) Evaluate $\oint_{C_{\pi / 4}(0)} f(z) d z$ where $C_{\pi / 4}(0)$ is the contour $|z|=\pi / 4$ traversed once in the counterclockwise direction.
(c) Find the Taylor series of $f(z)$ about $z=0$ and give its region of convergence.
(d) Compute $f^{(4)}(0)$.
[10] 7. (a) Show that

$$
F(z)= \begin{cases}1 & \text { if } z=0 \\ \frac{e^{z}-1}{z} & \text { if } z \neq 0\end{cases}
$$

is an entire function.
(b) Evaluate

$$
\int_{C_{2}(0)} \frac{\cos z}{e^{z}-1} d z
$$

where $C_{2}(0)$ is the circle $|z|=2$ traversed once in the counterclockwise direction.
[10] 8. Find the first four nonzero terms of the Taylor series at $z=0$ for

$$
\sin z \log (1-z)
$$

where $\log \mathrm{z}$ is the principal branch of $\log z$.
[16] 9. Evaluate the following definite integrals.
(a) $\quad I_{a}=\int_{-\infty}^{\infty} \frac{e^{i x}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$
(b) $I_{b}=\int_{0}^{2 \pi} \frac{d \theta}{1-2 \alpha \cos \theta+\alpha^{2}}$ where the constant $0<\alpha<1$.
\qquad Page 12 of 12 pages

