

Final Exam – Apr 14, 2016

Family Name	Given Name	
·		
Student Number	Signature	

This exam consists of 6 parts. No notes nor calculators. Note the number of marks for each question. Use your time wisely. Time: $2\frac{1}{2}$ hours

Problem	max score	score
1.	18	
2.	8	
3.	6	
4.	6	
5.	6	
6.	6	
total	50	

- (18 points) 1. Do the following short answer questions. Check your answer very carefully. (Work will be considered for this problem).
- (3 points) (a) Find all roots to the equation $(z+1)^{10} = z^{10}$.

(3 points) (b) Let $f(z) = \frac{1}{z^3(z-i)^2}$. Then the residue of f at z=i, denoted as $\mathrm{Res}(f;i)$ is

(b) _____

(3 points) (c) Find a branch of $\log(z^2 + iz - 3)$ such that it is analytic at z = i, and find its derivative at z = i.

(3 points) (d) Compute $\int_{\Gamma} \frac{z-i}{z^3+4z^2} dz$ where Γ is the circle |z|=10 traversed once counterclockwise.

(3 points) (e) Compute $\int_{\Gamma} z^{\frac{1}{2}} dz$ for the principal branch of $z^{\frac{1}{2}}$ along the line segment going from π to i.

3 points) (f) Compute $\int_{\Gamma} \frac{z^7}{(2\cos z - 2 + z^2)^2} dz$ where Γ is the circle $|z| = \frac{1}{100}$ traversed once counterclockwise.

- (8 points) 2. Do the following questions. You must write clearly your arguments and justify.
- (4 points) (a) If a complex-valued function f is analytic in $1 \le |z| \le 2$, $|f(z)| \le 3$ on |z| = 1, $|f(z)| \le 12$ on |z| = 2, prove that $|f(z)| \le 3|z|^2$ for all $1 \le |z| \le 2$.

(4 points) (b) Does there exist a function F(z) analytic in the annulus D: 1 < |z| < 2 such that F'(z) = 1/z for all $z \in D$? If yes construct such a function and justify. If no give a proof.

- (6 points) 3. Find the Laurent series for the following functions in the specified domains. You must write out explicitly the first four terms.
 - a) $\frac{z}{z^2-z-2}$, for 1 < |z| < 2;
 - b) $\frac{1}{e^z 1}$, for $0 < |z| < 2\pi$.

(6 points) 4. By using the method of contour integrals, compute $\int_0^\infty \frac{x^6}{(x^4+1)^2} dx$. (Solutions obtained by other methods will not receive any credit!)

(6 points) 5. By using the theory of residues, compute p. v. $\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 - 2x + 10} dx.$

(6 points) 6. By using the theory of residues, compute $\int_0^\pi \frac{1}{(a+\sin^2\theta)^2}d\theta$ where a>0.