The University of British Columbia

Math 301 (201) Final Examination - April 2005

Closed book exam. No notes or calculators allowed.
 Answer all 5 questions. Time: 2.5 hours.

1. [15]

The flow field given by a source located at $z=1$ is modified by the introduction of an infinite barrier at $x=0$. For what values of y is the speed on the barrier k times the speed at the same location without the barrier? What is the possible range of k ? Explain.
2. [30]
(a) Evaluate:

$$
I=\int_{0}^{\infty} \frac{x d x}{8+x^{3}}
$$

Hint: you should consider using a contour that includes the ray $\theta=\frac{2 \pi}{3}$.
(b) By integrating around the finite branch cut $[-1,1]$ (and using symmetry), evaluate

$$
J=\int_{0}^{1} \frac{x^{4} d x}{\left(1-x^{2}\right)^{\frac{1}{2}}\left(1+x^{2}\right)}
$$

(c) Show by considering the two cases $x>0$ and $x<0$ that

$$
\text { p.v. } \int_{-\infty}^{\infty} \frac{e^{i \omega x}}{\omega^{2}-1} d \omega=-\pi \sin |x| .
$$

3. [20]
(a) Find a conformal mapping $w=f(z)$ that takes the region

$$
\{|z-1|<\sqrt{2}\} \cap\{|z+1|<\sqrt{2}\}
$$

into a portion of the right half plane.
Draw rough sketches of the regions in both the z and w planes.
It might be useful to check the image of $z=0$.
(b) Find $\phi(x, y)$ that satisfies

$$
\begin{aligned}
& \nabla^{2} \phi=0 \text { in }\{|z-1|<\sqrt{2}\} \cap\{|z+1|<\sqrt{2}\} \\
& \text { with }: \phi=1 \text { on }|z+1|=\sqrt{2} \text {, and } \phi=2 \text { on }|z-1|=\sqrt{2} .
\end{aligned}
$$

4. [20]

Let $f(x)$ and $g(x)$ be two absolutely integrable functions. Solve the boundary-value problem using Fourier transform, assuming $|u(x, y)|$ decays rapidly as $(x, y) \rightarrow \infty$.

$$
\begin{aligned}
u_{x x}+u_{y y} & =f(x) e^{-y}, \quad-\infty<x<\infty, 0<y \\
u(x, 0) & =g(x), \quad-\infty<x<\infty
\end{aligned}
$$

5. [15]

Solve the following ODE using Laplace transform and Bromwich formula:

$$
y^{\prime \prime \prime}+y=1, \quad(t>0) ; \quad y(0)=y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=1 .
$$

Do not replace exponential functions by trigonometric functions in your solution.

