The University of British Columbia Math 301 Final Examination - April 2009

1. [10] Find all values of:
(a)

$$
\left(i^{2}\right)^{i}
$$

(b)

$$
\left(i^{i}\right)^{2}
$$

(c)

$$
\operatorname{arcsinh}(i)
$$

2. [18] Evaluate the integrals; justify all steps carefully
(a)

$$
K=p . v \int_{0}^{\infty} \frac{x^{1 / 3}}{x^{2}-1} d x
$$

(b)

$$
J=\int_{0}^{\infty} \frac{x^{1 / 2} \log (x)}{1+x^{2}} d x
$$

3. [18]
(a) Carefully construct a branch of the function

$$
g(z)=[z(1-z)]^{1 / 2}
$$

with a branch cut on the interval $0 \leq x \leq 1$ such that $g\left(\frac{1}{2}(1+i)\right)=-\frac{1}{\sqrt{2}}$.
(b) Evaluate; justify all steps carefully

$$
J=\int_{0}^{1} x^{\frac{1}{2}}(1-x)^{\frac{1}{2}} d x .
$$

4. [18] (a) Find the image of the upper half z-plane ($y \geq 0$) under the conformal mapping $s=f(z)$

$$
s=\xi+i \eta=f(z)=\frac{z-i}{z+i} .
$$

(b) Find the image of the interior of the unit circle in the s - plane under the conformal mapping $w=g(s)$

$$
w=u+i v=g(s)=\frac{s}{(1-s)^{2}} .
$$

[Hint: first show that the image of the circle is real.]
(c) Simplify the combined mapping, defining $G(z)$

$$
\begin{equation*}
w=u+i v=g(f(z))=G(z) \tag{1}
\end{equation*}
$$

(d) What is the complex potential $F(z)$ of a uniform flow parallel to the x - axis in the upper half z - plane?
Use the above mapping to find the image of this uniform flow in the w - plane defined by (1).
Represent the images parametrically as $u(t), v(t)$, then eliminate v to give the streamlines in the form $u=H(v)$.
Sketch several curves.
5. [18]
(a) Find the Fourier transform, justify all steps carefully

$$
g(x)=e^{-|x|}, \quad-\infty<x<\infty .
$$

(b) Use a Fourier transform to solve

$$
\begin{aligned}
u_{t t}+2 u_{t}+u & =u_{x x}, \quad-\infty<x<\infty, 0<t \\
u(x, 0) & =e^{-|x|}, u_{t}(x, 0)=0,-\infty<x<\infty .
\end{aligned}
$$

Write the solution in the form

$$
u(x, t)=\int_{0}^{\infty} G(x, t, \omega) d \omega
$$

6. [18]
(a) Find the inverse Laplace transform, justify all steps carefully

$$
G(x, t)=L^{-1}\left(\frac{e^{-x \sqrt{s}}}{\sqrt{s}}\right)
$$

(c) Use a Laplace transform to find the solution to the problem:

$$
\begin{aligned}
u_{t} & =u_{x x}, 0<x<\infty, 0<t \\
u(x, 0) & =0, u(0, t)=\frac{1}{\sqrt{t}}, t>0
\end{aligned}
$$

You may use the results

$$
\int_{0}^{\infty} e^{-r^{2}} d r=\frac{\sqrt{\pi}}{2} ; \int_{0}^{\infty} \frac{1}{\sqrt{u}} e^{-a u} d u=\sqrt{\frac{\pi}{a}}
$$

