Math 301 Final Examination - April 24, 2010

THIS EXAM HAS 8 QUESTIONS.
YOU ARE PERMITTED ONE SHEET OF NOTES (DOUBLE SIDED).
NO CELLPHONES, BOOKS OR CALCULATORS.

1. (10pts) Use contour integration to calculate $\int_{0}^{\infty} \frac{\sin x}{x} d x$, including a brief explanation of every step.
2. (10 pts)
(a) Construct a conformal map of the unit disk centred at the origin onto itself, that takes the point $i / 2$ to the origin.
(b) Construct a conformal map of the disk $|z-1|<1$ onto the whole left half plane.
3. (10 pts) Solve Laplace's equation for ϕ in the lens-shaped region between the circles $|z-i|=1$ and $|z-1|=1$ with the boundary conditions that $\phi=0$ on the circle $|z-i|=1$ and $\phi=1$ on the circle $|z-1|=1$.
4. (15 pts)
(a) Use residue calculus to verify the sum

$$
\sum_{k=-\infty}^{\infty} \frac{1}{k^{2}+a^{2}}=\frac{\pi}{a} \operatorname{coth}(\pi a)
$$

(b) Use the result of part (a) to calculate $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$, explaining all steps in full detail.
5. (15 pts) Let $f(z)=\frac{\left(1-z^{2}\right)^{1 / 2}}{1+z^{2}}$.
(a) Find the residue of $f(z)$ at infinity.
(b) Use an appropriate branch of $f(z)$ with a dogbone contour and residue calculus to show that

$$
\int_{-1}^{1} \frac{\sqrt{1-x^{2}}}{1+x^{2}} d x=(\sqrt{2}-1) \pi
$$

(continued on page 2)
6. (15 pts) Find the inverse Laplace transform of

$$
F(s)=\frac{\sinh x s^{1 / 2}}{s^{2} \sinh s^{1 / 2}}
$$

on $0<x<1$. No branch cut is needed here. You should describe the method in full detail but you can omit estimates of integrals.
7. (10 pts) Show that

$$
\int_{0}^{\infty} e^{-i s^{2}} d s=(1-i) \sqrt{\frac{\pi}{8}}
$$

8. (15 pts) Use the Fourier Transform to solve the Schroedinger equation

$$
\begin{aligned}
i U_{t}+U_{x x} & =0 \quad-\infty<x<\infty \quad t>0 \\
U(x, 0) & =f(x)
\end{aligned}
$$

with $f(x) \rightarrow 0$ as $|x| \rightarrow \infty$. Your solution should be in the convolution form

$$
U(x, t)=\int_{-\infty}^{\infty} f\left(x^{\prime}\right) g\left(x-x^{\prime}\right) d x^{\prime}
$$

where the function g must be explicitly determined. Show all work, but you may use the result of question 7 without proof in your solution.

