University of British Columbia Math 301, Section 201

Final exam

Date: April 18, 2012 **Time:** 8:30 - 11:00am

Name (print): Student ID Number: Signature:

Instructor: Richard Froese

Instructions:

- 1. No notes, books or calculators are allowed. A summary sheet with properties of Fourier and Laplace transforms is provided.
- 2. Read the questions carefully and make sure you provide all the information that is asked for in the question.
- 3. Show all your work. Answers without any explanation or without the correct accompanying work could receive no credit, even if they are correct.
- 4. Answer the questions in the space provided. Continue on the back of the page if necessary.

Question	Mark	Maximum
1		14
2		14
3		15
4		14
5		15
6		14
7		14
Total		100

2

[14] 1. Evaluate

$$I = \int_0^\infty \frac{\cos(\pi x)}{1 - 4x^2} dx,$$

explaining all your steps.

2. Evaluate

$$I = \int_0^\infty \frac{x^{\alpha - 1}}{1 + x} dx, \quad 0 < \alpha < 1.$$

explaining all your steps.

- 3. Let g(z) be the branch of $(z(z-1))^{1/2}$ defined by $g(z) = \exp((\operatorname{Log}(z) + \operatorname{Log}(z-1))/2)$, where Log denotes the principal branch of the logarithm.
 - (a) Compute $\lim_{z\to -1} g(z)$ when z approaches -1 from the upper half plane, and from the lower half plane. Is g(z) continuous at -1?

[4]

⁽b) Where are the branch cuts for g(z)?

(c) Show how to construct g(z) using the 'range of angles' method.

(d) What is the value of g(i) and g(-i)?

4. Solve Laplaces equation $\Delta \phi = 0$ in the region between the circles $\{z : |z| = 2\}$ and $\{z : |z-1| = 1\}$ with boundary condition $\phi = 1$ on the inner circle and $\phi = 0$ on the outer circle.

[14]

- 5. Consider the complex velocity potentials for ideal inviscid flow given by $\Omega_1(z) = iV_0(z 1/z)$ and $\Omega_2(z) = i\gamma \log(z)$. Here $V_0 > 0$ and $\gamma > 0$.
 - (a) Show that $\Omega_1(z)$ describes a flow around the unit circle $\{z : |z| = 1\}$.

[4]

(b) What are the streamlines for the flow described by $\Omega_2(z)$? Plot several of these, and indicate with arrows the direction of the flow.

[3]

(c) Explain why $\Omega(z) = \Omega_1(z) + \Omega_2(z)$ also describes a flow around the unit circle $\{z : |z| = 1\}$. What is the asymptoic velocity of this flow as $|z| \to \infty$?

(d) Where are the stagnation point for the flow described by $\Omega(z)$? For what values of $\gamma > 0$ are the stagnation points on the boundary of the unit circle?

[14]

6. Solve

$$u_t(x,t) = u_{xx}(x,t) + u(x,t). \quad -\infty < x < \infty, \quad t > 0$$

 $u(x,0) = e^{-x^2}$

[7]

7. (a) What is the Laplace transform Y(s) of the solution y(t) to the initial value problem

$$y'''(t) - 6y''(t) + 11y'(t) - 6y(t) = e^{-2t}, \quad y(0) = y'(0) = 0, \quad y''(0) = 1?$$

[7]

(b) Use the Nyquist criterion to determine whether the solution y(t) is bounded as t tends to infinity.