University of British Columbia Math 301, Section 201

Final exam

Date: April 20, 2013 **Time:** 8:30 - 11:00am

Name (print): Student ID Number: Signature:

Instructor: Richard Froese

Instructions:

- 1. No notes, books or calculators are allowed. A summary sheet with properties of Fourier and Laplace transforms is provided.
- 2. Read the questions carefully and make sure you provide all the information that is asked for in the question.
- 3. Show all your work. Answers without any explanation or without the correct accompanying work could receive no credit, even if they are correct.
- 4. Answer the questions in the space provided. Continue on the back of the page if necessary.

Question	Mark	Maximum
1		14
2		15
3		15
4		14
5		14
6		14
7		14
Total		100

[14] 1. Evaluate

$$f(x) = \int_{-\infty}^{\infty} \frac{e^{ikx}}{(k^2 + 1)^2} dk.$$

[5]

2. (a) What are the branch points of the multivalued function $f(z) = (z^2 + 1)^{1/2}$? Is infinity a branch point?

(b) Using the range of angles method, define a branch of f(z) that is continuous and positive for $z \in \mathbb{R}$.

(c) Using the range of angles method, define a branch of f(z) that is analytic outside the unit circle and negative for large positive $z \in \mathbb{R}$.

3. In this question we evaluate

$$I = \int_0^\infty \frac{\sqrt{x}}{x^2 + 1} dx.$$

[3]

(a) Draw a diagram that shows the contour you are using, and the branch cut for \sqrt{z} .

(b) What does the Cauchy residue theorem say for your contour? Compute the residues that appear.

[4]

(c) Which integrals (over portions of your contour) tend to zero in the limit? Give estimates that show this.

[4]

(d) Evaluate I.

4. Find a fractional linear transformation that maps the shaded region $\{z : \text{Im} z \ge 0, |z - 4i| \ge 1\}$ to the annulus $\{z : 1 \le |z| \le A\}$ with the real line mapping to the unit circle. What is the outer radius A? (Recall that α and α^* are symmetric with respect to a circle centred at a with radius R if $\alpha^* = a + R^2/(\overline{\alpha} - \overline{a})$.)

5. Consider the following region with boundary data.

(a) Show that the Joukowski map J(z) = (1/2)(z + 1/z) maps the shaded region onto the upper half plane.

(b) Solve Laplaces equation $\Delta \phi = 0$ in the shaded region, with the indicated boundary conditions.

[7]

6. (a) What is the Fourier transform of $x^2 e^{-x^2/2}$?

(b) Use the Fourier transform to compute $\int_{-\infty}^{\infty} e^{-|x-y|} e^{-|y|} dy$. (Hint: you can use the result from an earlier problem for the last step.)

7. (a) Compute the Laplace transform Y(s) of the solution y(t) to

$$y'''(t) + y'(t) - y(t) = \cos(t),$$

 $y''(0) = 1, \quad y''(0) = y'(0) = y(0) = 0,$

[7]

(b) Use the Nyquist criterion to decide whether the solution y(t) grows exponentially as $t \to \infty$ or not.

Fourier Transform Summary				
	f(x)	$\widehat{f}(k)$		
Definition and inversion				
	$\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{ikx}\widehat{f}(k)dk$	$\int_{-\infty}^{\infty} e^{-ikx} f(x) dx$		
Examples				
1	$\frac{1}{1+x^2}$	$\pi e^{- k }$		
2	$e^{- x }$	$\frac{2}{1+k^2}$		
3	$\begin{cases} 1 & x < 1 \\ 1/2 & x = 0 \\ 0 & x \ge 1 \end{cases}$	$2\frac{\sin(k)}{k}$		
4	$\frac{\sin(x)}{x}$	$\pi \begin{cases} 1 & k < 1 \\ 1/2 & k = 0 \\ 0 & k > 1 \end{cases}$		
5	$e^{-x^2/(2\sigma^2)}$	$\sqrt{2\pi}\sigma e^{-\sigma^2 k^2/2}$		
Properties				
0	$c_1 f_1(x) + c_2 f_2(x)$	$c_1\widehat{f}_1(k) + c_2\widehat{f}_2(k)$		
1	f(x+a)	$e^{iak}\widehat{f}(k)$		
2	$e^{iax}f(x)$	$\widehat{f}(k-a)$		
3	f(ax)	$a^{-1}\widehat{f}(k/a)$		
4	f'(x)	$ik\widehat{f}(k)$		
5	ixf(x)	$-\widehat{f'}(k)$		
6	f * g(x)	$\widehat{f}(k)\widehat{g}(k)$		
7	f(x)g(x)	$(2\pi)^{-1}\widehat{f}*\widehat{g}(k)$		

Note about the examples 3 and 4: The value of a Fourier or inverse Fourier transform is insensitive to changes of the input function at a single point. In property 6: $f * g(x) = \int_{-\infty}^{\infty} f(x - y)g(y)dy$

Laplace Transform Summary				
	y(t)	Y(s)		
Definition and inversion				
	$\frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} e^{st} Y(s) ds$	$\int_0^\infty e^{-st} y(t) dt$		
Examples				
1	e^{-at}	$\frac{1}{s+a}$		
2	$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$		
3	$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$		
Properties				
0	$c_1 y_1(t) + c_2 y_2(t)$	$c_1 Y_1(s) + c_2 Y_2(s)$		
1	y'(t)	sY(s) - y(0)		
2	ty(t)	-Y'(s)		
3	$e^{at}y(t)$	Y(s-a)		
4	u(t-a)y(t-a)	$e^{-ac}Y(s)$		
5	$y_1 * y_2(t)$	$Y_1(s)Y_2(s)$		

In property 4: $u(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$ In property 5: $y_1 * y_2(t) = \int_0^t y_1(t-\tau) y_2(\tau) d\tau$