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1.(10 points) Find the two pairs of focuses and directrices of the ellipse x2 + 4y2 + 2x = 0.
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2.(10 points) Let a > 0, b > 0, and F and G be the parabolas y2 = 4a(x+ a) and y2 = 4b(−x+ b). The
origin is the focus of both parabolas. Suppose F meets G at P above the x-axis. Use the
reflection property of parabolas to prove that F and G cross at P at right angle.
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3. Classify the conics in R2 with the following equations. You do not need to find their axes.

(a)(5 points) 3x2 − 8xy + 2y2 − 2x+ 4y − 16 = 0

(b)(5 points) x2 + 8xy + 16y2 − x+ 8y − 12 = 0
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4.(10 points) On a triangle ABC, D and D′ are points on side BC so that ∠BAD = ∠D′AC, E and E′ are
points on side CA so that ∠CBE = ∠E′BA, and F and F ′ are points on sides AB so that
∠ACF = ∠F ′CB. Suppose that AD, BE, CF are concurrent. Show that AD′, BE′, CF ′ are

also concurrent. Hint: You may use
BD

DC
=
AB sin∠BAD
AC sin∠DAC

.
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5.(10 points) Find an affine transformation which maps the ellipse x2 + 4y2 + 2x = 0 to the unit circle.
(It is not unique, but you only need to find one.)
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6. (a)(5 points) Find the affine transformation which maps the points

(
1
−1

)
,

(
2
−2

)
and

(
3
−4

)
to the

points

(
8
13

)
,

(
3
4

)
and

(
0
−1

)
, respectively.

(b)(5 points) Find the projective transformation which maps the Points [1, 0, 0], [0, 1, 0], [0, 0, 1] and
[1, 1, 1] to the Points [2, 1, 0], [1, 0,−1], [0, 3,−1] and [3,−1, 2].
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(c)(5 points) Find the Point of intersection of the Lines L1 : x+ 2y+ 5z = 0 and L2 : 3x− y+ z = 0 .

7. Let A = [2, 1, 1], B = [−1, 1,−1], C = [1, 2, 0] and D = [−1, 4,−2] be four points in RP2.

(a)(5 points) Verify that A,B,C,D are collinear and find the equation of the Line.



December 2010 Math 308 Section 101 Final Exam Page 9 of 12

(b)(5 points) Find the cross ratio (ABCD).

(c)(5 points) Find a point X in the same line so that (ABCX) = −1.
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8.(10 points) Find the imagies of the circles |z| = 1 and |z| = 2 under the Möbius transformation

t(z) =
z − 2

z + i
.
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9.(10 points) Let C be a circle with radius r and centered at O. For any ordinary point P 6= O, let P ′ be
the inversion of P in C. Then the line p through P ′ and perpendicular to OPP ′ is called the
polar of P for the circle C.

Show that, if the polar of P passes through a point Q, then the polar of Q passes through P .
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Some Formulas

eccentricity standard eq focus directrix tangent at (x1, y1)

ellipse 0 ≤ e < 1
x2

a2
+
y2

b2
= 1 (±ae, 0) x = ±a/e x1x

a2
+
y1y

b2
= 1

hyperbola e > 1
x2

a2
− y2

b2
= 1 (±ae, 0) x = ±a/e x1x

a2
− y1y

b2
= 1

parabola e = 1 y2 = 4ax (a, 0) x = −a y1y = 2a(x+ x1)

Above b = a
√
|1− e2|

1. ellipsoid
x2

a2
+
y2

b2
+
z2

c2
= 1

2. hyperboloids of one and two sheets, elliptic cone
x2

a2
+
y2

b2
− z2

c2
= 1,−1, 0

3. elliptic paraboloid and hyperbolic paraboloid z =
x2

a2
± y2

b2

4. The affine transformation of R2 mapping [ 0
0 ], [ 1

0 ] and [ 0
1 ] to P = [ p1p2 ], Q = [ q1q2 ], and

R = [ r1r2 ] is

t(~x) = ~P + A~x, A = ( ~PQ| ~PR) =

(
q1 − p1 r1 − p1

q2 − p2 r2 − p2

)
.

5. Affine transformations preserve collinearity, coincidence, parallel lines, and signed ratio of
lengths along the same direction.

6. Ceva’s and Menelaus’ theorems: P ∈ BC, Q ∈ CA, R ∈ AB, AR
RB ·

BP
PC ·

CQ
QA = ±1 implies

coincidence or collinearity.

7. The projective transformation of RP2 mapping [1, 0, 0], [0, 1, 0], [0, 0, 1] and [1, 1, 1] to
P = [p1, p2, p3], Q = [q1, q2, q3], R = [r1, r2, r2] and S = [s1, s2, s3] is

t([~x]) = [A~x], A = [uP ᵀ|vQᵀ|wRᵀ], where [P ᵀ|Qᵀ|Rᵀ]
[
u
v
w

]
= Sᵀ.

Projective transformations preserve collinearity, coincidence, and cross ratio.

8. The Line passing Points P and Q has equation det(Xᵀ|P ᵀ|Qᵀ) = 0.

9. If A = [a], B = [b], C = [c], D = [d] are 4 collinear points with c = αa+ βb and d = γa+ δb,
then (ABCD) = (β/α)/(δ/γ) = (AC/CB)/(AD/DB). If (ABCD) = k, then
(BACD) = (ABDC) = 1/k and (ACBD) = (DBCA) = 1− k.

10. Inversion in the unit circle: (x, y) 7→ ( x
r2
, y
r2

) where r =
√
x2 + y2. Inversion in the circle

|z − c| = R is z 7→ R2

z̄−c̄ + c.

11. The stereographic projection π : S2 → C satisfies π : (X,Y, Z) 7→ X+iY
1−Z with

π−1 : x+ iy 7→ 1
x2+y2+1

(2x, 2y, x2 + y2 − 1).


