This examination consists of 2 pages.
Check to ensure that this paper is complete.
TIME: 2 1/2 hours

1. [15 marks] In the vector space $V=P_{4}(\mathbb{R})$ of polynomials with real coefficients of degree less than or equal to 4 , determine whether the following subsets are subspaces. Find the dimension of each that is a subspace.
a) $W=\left\{f \in V \mid f(0)+f^{\prime}(0)=0\right\}\left(f^{\prime}\right.$ denotes the derivative of $\left.f\right)$
b) $W=\left\{f \in V \mid f(0)+f^{\prime}(0)=1\right\}$
2. [15 marks] Let V be the 3 -dimensional vector space of real-valued functions of the form $a e^{x}+b e^{2 x}+c e^{3 x}$. Define $T: V \rightarrow V$ by $T(f(x))=f(x)+f^{\prime}(x)$ (where f^{\prime} is the derivative of f).
a) Show that T is a linear transformation.
b) One basis of V is $e^{x}, e^{2 x}, e^{3 x}$. Show that $e^{x}+e^{2 x}, e^{2 x}+e^{3 x}, e^{x}+e^{3 x}$ is another basis, and find the matrix of T with respect to this second basis.
3. [15 marks] Let A be the 3×3 matrix

$$
A=\left(\begin{array}{ccc}
-1 & -2 & -4 \\
1 & 2 & 2 \\
1 & 1 & 3
\end{array}\right)
$$

a) Find the determinant and the trace of A.
b) A has only 2 distinct eigenvalues, one of which equals 1 . Find the other eigenvalue of A.
c) Show that A is diagonalizable. What is the minimum polynomial of A ?
4. [15 marks] Let V be the vector space $M_{2 \times 2}(\mathbb{R})$ whose elements are 2×2 real matrices. Define a linear transformation T from V to V by $T(A)=\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right) \cdot\left(A-A^{t}\right)$, where A^{t} denotes the transpose of A (you may assume that T is indeed a linear transformation). Find a Jordan canonical form of T.
5. [15 marks] On the vector space $V=P_{1}(\mathbb{R})$ define an inner product $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$ (you do not need to prove that this is an inner product).
a) Apply the Gram-Schmidt process to the basis $1, t$ of V to produce an orthonormal basis of V.
b) Let T be the linear transformation of V defined by $T(f)=f^{\prime}+3 f$ (you may assume that T is indeed a linear transformation). Let T^{*} be the adjoint of T with respect to the given inner product. Evaluate $T^{*}(4-2 t)$.
6. [9 marks] Let A be an invertible real $n \times n$ matrix.
a) Prove that 0 is not an eigenvalue of A.
b) If λ is an eigenvalue of A, prove that λ^{-1} is an eigenvalue of A^{-1}.
7. [16 marks] Determine, with justification, whether the following statements are true or false.
a) If A and B are symmetric 3×3 matrices such that $A B=0$, then $B A=0$.
b) The 4×4 matrix all of whose entries equal 1 except for its 4,4 entry which equals 2 is diagonalizable.
c) There are 5×5 matrices A and B of rank 4 and 3 respectively such that $A B$ has rank 4 .
d) There are 5×5 matrices A and B of rank 4 and 3 respectively such that $A B$ has rank 2 .

