Math 310 - Sec. 201-2013-Prof. Juan Souto

Final exam: 8:30-11:00
Notation. Throughout this exam, $V$ is a complex vector spaces of finite dimension endowed with an inner product $\langle\cdot, \cdot\rangle$. The vector space of all complex polynomials is denoted by $\mathcal{P}$; the subspace consisting of those polynomials of degree at most $n$ is denoted by $\mathcal{P}_{n}$.

| Question 1 | $/ 38$ |
| :--- | ---: |
| Question 2 | $/ 25$ |
| Question 3 | $/ 20$ |
| Question 4 | $/ 15$ |
| Question 5 | $/ 17$ |
| Question 6 | $/ 20$ |
| Question 7 | $/ 15$ |
| Total | $/ 150$ |

## Name:

UBC ID:

Question 1. Mark true or false.

|  | True | False |
| :---: | :---: | :---: |
| $\{P(x) \in \mathcal{P} \mid P(-1)+P(2)=0\}$ is a subspace of $\mathcal{P}$. |  |  |
| $\{P(x) \in \mathcal{P} \mid P(0)=1\}$ is a subspace of $\mathcal{P}$. |  |  |
| $\left\{P(x) \in \mathcal{P} \mid \int_{0}^{1} P(t) d t=0\right\}$ is a subspace of $\mathcal{P}$. |  |  |
| If $V \subset \mathbb{C}^{n}$ is such that $v+w \in V$ for all $v, w \in V$, then $V$ is a subspace. |  |  |
| Consider $\mathbb{C}^{n}$ as a complex vectorspace; $\mathbb{R}^{n}$ is a subspace. |  |  |
| The union of two subspaces $U_{1}, U_{2}$ of $V$ is a subspace if and only if either $U_{1} \subset U_{2}$ or $U_{2} \subset U_{2}$. |  |  |
| The intersection of three subspaces of $V$ is a subspace. |  |  |
| A vector space has infinite dimension if and only if it contains a subspace of dimension $n$ for all $n$. |  |  |
| If $W \subset V$ is a subspace with $\operatorname{dim}(W)=\operatorname{dim}(V)$ then $W=V$. |  |  |
| If $W_{1}, W_{2} \subset V$ are subspaces with $\operatorname{dim}\left(W_{1}\right)=\operatorname{dim}\left(W_{2}\right)$ then $W_{1}=W_{2}$. |  |  |
| $T: \mathcal{P} \rightarrow \mathcal{P}, \quad T\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=a_{0}+a_{1} x+a_{2} x^{2}$ is linear. |  |  |
| $T: \mathcal{P} \rightarrow \mathbb{C}^{3}, \quad T(P(x))=P(1)+P(2)-P(3)$ is linear. |  |  |
| $T: \mathcal{P} \rightarrow \mathbb{C}, \quad T\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=a_{0}^{2}$ is linear. |  |  |
| $T: \mathcal{P} \rightarrow \mathbb{C}, \quad T\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=a_{0}-\bar{a}_{1}+a_{2}-\bar{a}_{3}$ is linear. |  |  |
| If $T: V \rightarrow V$ is linear and maps a basis of $V$ to a basis of $V$, then $T$ is invertible. |  |  |
| The linear map $T: \mathcal{P}_{2} \rightarrow \mathbb{C}^{3}, T(P(x))=(P(1), P(2), P(10))$ is invertible. |  |  |
| If $W_{1}, W_{2} \subset V$ are subspaces with $\operatorname{dim}\left(W_{1}\right)=\operatorname{dim}\left(W_{2}\right)$ then there is a linear map $T: V \rightarrow V$ with $T\left(W_{1}\right)=W_{2}$ |  |  |


|  | True | False |
| :---: | :---: | :---: |
| Every linear map $T: V \rightarrow V$ has an eigenvalue. |  |  |
| $T: V \rightarrow V$ is surjective if and only if $\operatorname{Ker}(T)=0$. |  |  |
| If the image of a linear map $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{4}$ contains 3 linearly independent polynomials, then $T$ is injective. |  |  |
| There is a surjective linear map $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{4}$ |  |  |
| For every $d=0,1, \ldots, 5$ there is a linear map $T: \mathcal{P}_{4} \rightarrow \mathcal{P}_{4}$ whose kernel has dimension $d$. |  |  |
| If the kernel of a linear map $T: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n-2}$ has dimension 7 then $T$ is surjective. |  |  |
| There is an injective linear map $T: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n-2}$. |  |  |
| There is a unique matrix associated to every linear map $T: V \rightarrow W$. |  |  |
| $T: V \rightarrow V$ is diagonalizable if and only if all eigenvalues of $T$ are distinct. |  |  |
| If all eigenvalues of $T$ are distinct, then $T$ is diagonalizable. |  |  |
| There is a basis with respect to which the matrix of $T$ is upper triangular. |  |  |
| $T$ is injective if and only if 0 is not an eigenvalue of $T$. |  |  |
| $T$ has an eigenvalue if and only if $T$ is normal. |  |  |
| If $T$ is normal, then $T$ is diagonalizable. |  |  |
| If $T$ is normal, then there is a ON-basis of $V$ consisting of eigenvectors. |  |  |
| $\lambda \in \mathbb{C}$ is an eigenvalue of $T$ if and only if $\operatorname{Ker}\left((T-\lambda \mathrm{Id})^{5}\right) \neq 0$. |  |  |
| If $T$ is normal and $v$ is an eigenvector of $T$, then $v$ is also an eigenvector of $T^{*}$. |  |  |
| If $T^{5}=0$, then $T=0$. |  |  |
| If $T^{5}$ is diagonalizable, then $T$ is diagonalizable. |  |  |
| Let $T^{*}$ be the adjoint of $T$. If $T^{*}=0$, then $T=0$. |  |  |
| The matrix of $T^{*}$ with respect to an arbitrary basis of $V$ is the transpose conjugate of that of $T$. |  |  |

Question 2. Let $T: V \rightarrow V$ be a linear map.
(1) Define the $\operatorname{kernel}^{1} \operatorname{Ker}(T)$ of $T$.
(2) Prove that $\operatorname{Ker}(T)$ is a subspace of $V$.
(3) Prove that $T$ is injective if and only if $\operatorname{Ker}(T)=0$.

[^0](4) Give an example of a linear map $T: V \rightarrow V$ with $\operatorname{Ker}(T) \neq \operatorname{Ker}\left(T^{2}\right) \neq$ $\operatorname{Ker}\left(T^{3}\right)$.
(5) Suppose that $\operatorname{Ker}(T)=\operatorname{Ker}\left(T^{2}\right)$. Prove that $\operatorname{Ker}\left(T^{2}\right)=\operatorname{Ker}\left(T^{3}\right)$.

Name:
UBC ID:

Question 3. Given $x_{0}, \ldots, x_{n}, y_{0}, \ldots, y_{n} \in \mathbb{C}$ suppose that $x_{i} \neq x_{j}$ for $i \neq j$. Prove that there is a unique polynomial $P(x) \in \mathcal{P}_{n}$ of degree at most $n$ satisfying $P\left(x_{i}\right)=y_{i}$ for all $i=0, \ldots, n$.

## Question 4.

(1) Let $v_{1}, \ldots, v_{r} \in V$. Define $\left(v_{1}, \ldots, v_{r}\right)$ is linearly independent.
(2) Let $T: V \rightarrow V$ be linear. Suppose that $v_{1} \in \operatorname{Ker}\left(T^{2}\right), v_{2} \in \operatorname{Ker}(T-\mathrm{Id})$ and $v_{3} \in \operatorname{Ker}(T+\mathrm{Id})$ are non-zero vectors. Prove that $\left(v_{1}, v_{2}, v_{3}\right)$ is linearly independent.

Name:
UBC ID:

Question 5. Let $T: V \rightarrow V$ be linear and $\left(v_{1}, \ldots, v_{d}\right)$ a basis of $V$. Prove that the following statements are equivalent:
(1) The matrix of $T$ with respect to the basis $\left(v_{1}, \ldots, v_{d}\right)$ is upper triangular.
(2) $T\left(v_{j}\right) \in \operatorname{Span}\left(v_{1}, \ldots, v_{j}\right)$ for all $j=1, \ldots, d$.

Question 6. Let $T: V \rightarrow V$ be linear.
(1) Suppose that $T: V \rightarrow V$ is diagonalizable. Prove that there is $S: V \rightarrow V$ linear with $S^{\operatorname{dim}(V)}=T$.
(2) Give an example of a complex vector space $V$ of finite dimention and of a non-zero operator $T: V \rightarrow V$ with $T^{\operatorname{dim}(V)}=0$.
(3) Suppose that $T: V \rightarrow V$ is a non-cero operator with $T^{\operatorname{dim}(V)}=0$. Prove that there is no operator $S: V \rightarrow V$ with $S^{\operatorname{dim}(V)}=T$.

Question 7. Let $T: V \rightarrow V$ be linear.
(1) Define $T$ is normal.

Suppose from now on that $T: V \rightarrow V$ is normal and recall that this implies that $\|T(v)\|=\left\|T^{*}(v)\right\|$ for all $v \in V$.
(2) Prove that $v \in V$ is an eigenvector of $T$ if and only if it is an eigenvector of $T^{*}$.
(3) Suppose that $v \in V$ is an eigenvector of $T$. Prove that the orthogonal complement of $\operatorname{Span}(v)$ is $T$-invariant.


[^0]:    $1_{\text {or equivalently, the nullspace. }}$

