UBC ID:

Name:

Math 310 - Sec. 201 - 2013 - Prof. Juan Souto

FINAL EXAM: 8:30 - 11:00

Notation. Throughout this exam, V is a complex vector spaces of finite dimension endowed with an inner product $\langle \cdot, \cdot \rangle$. The vector space of all complex polynomials is denoted by \mathcal{P} ; the subspace consisting of those polynomials of degree at most n is denoted by \mathcal{P}_n .

Question 1	
	/38
Question 2	
	/25
Question 3	
	/20
Question 4	
	/15
Question 5	
	/17
Question 6	
	/20
Question 7	
	/15
Total	
	/150

UBC ID:

Question 1. Mark true or false.

	True	False
$\{P(x) \in \mathcal{P} P(-1) + P(2) = 0\}$ is a subspace of \mathcal{P} .	t	
$\{P(x) \in \mathcal{P} P(0) = 1\}$ is a subspace of \mathcal{P} .	t	
$\{P(x) \in \mathcal{P} \int_{a}^{1} P(t) dt = 0\}$ is a subspace of \mathcal{P} .	I]
(-(a) - (b) - (b		
If $V \subset \mathbb{C}^n$ is such that $v + w \in V$ for all $v, w \in V$, then V	I	
is a subspace.		
Consider \mathbb{C}^n as a complex vectorspace: \mathbb{R}^n is a subspace.	I	
	.	
The union of two subspaces U_1 U_2 of V is a subspace if and	I	
only if either $U_1 \subset U_2$ or $U_2 \subset U_2$.		
The intersection of three subspaces of V is a subspace.	I]
A vector space has infinite dimension if and only if it contains	I]
a subspace of dimension n for all n .		
If $W \subset V$ is a subspace with $\dim(W) = \dim(V)$ then $W = V$.	I]
If $W_1, W_2 \subset V$ are subspaces with $\dim(W_1) = \dim(W_2)$ then	I]
$W_1 = W_2.$		
$T: \mathcal{P} \to \mathcal{P}, T(a_0 + a_1x + \dots + a_nx^n) = a_0 + a_1x + a_2x^2 \ is$	I	
linear.		
$T: \mathcal{P} \to \mathbb{C}^3$, $T(P(x)) = P(1) + P(2) - P(3)$ is linear.	I	
$T: \mathcal{P} \to \mathbb{C}, T(a_0 + a_1x + \dots + a_nx^n) = a_0^2 \text{ is linear.}$	I]
$T: \mathcal{P} \to \mathbb{C}, T(a_0 + a_1 x + \dots + a_n x^n) = a_0 - \bar{a}_1 + a_2 - \bar{a}_3$	I]
is linear.		
If $T: V \to V$ is linear and maps a basis of V to a basis of V,	I]
then T is invertible.		
The linear map $T: \mathcal{P}_2 \to \mathbb{C}^3, T(P(x)) = (P(1), P(2), P(10))$	I]
is invertible.		
If $W_1, W_2 \subset V$ are subspaces with $\dim(W_1) = \dim(W_2)$	I	
then there is a linear map $T: V \to V$ with $T(W_1) = W_2$.		

	True	False
Every linear map $T: V \to V$ has an eigenvalue.		
$T: V \to V$ is surjective if and only if $\text{Ker}(T) = 0$.		
If the image of a linear man T , D , D contains		
If the image of a linear map $1: P_2 \rightarrow P_4$ contains		1
There is a surjective linear map $T: \mathcal{P}_{2} \to \mathcal{P}_{4}$]
For every $d = 0, 1, \ldots, 5$ there is a linear map $T : \mathcal{P}_4 \to \mathcal{P}_4$ whose kernel has dimension d .		
If the kernel of a linear map $T: \mathcal{P}_n \to \mathcal{P}_{n-2}$ has]
dimension 7 then T is surjective.		
There is an injective linear map $T: \mathcal{P}_n \to \mathcal{P}_{n-2}$.		
There is a unique matrix associated to every linear map		1
$T: V \to W$.		
$1: V \rightarrow V$ is anagonalizable if and only if all eigenvalues of T are distinct		1
If all eigenvalues of T are distinct, then T is diagonalizable		
There is a basis with respect to which the matrix of T is]
upper triangular.		
T is injective if and only if 0 is not an eigenvalue of T .		
T has an eigenvalue if and only if T is normal.		1
If T is normal than T is disconclisable		
If T is normal, then there is a ON-basis of V consisting]
of eigenvectors.		
$\lambda \in \mathbb{C}$ is an eigenvalue of T if and only if		
$\operatorname{Ker}((T - \lambda \operatorname{Id})^5) \neq 0.$		
If T is normal and v is an eigenvector of T , then		
v is also an eigenvector of T^* .		
$I_{J} I^{\circ} = 0, \ then \ I = 0.$		I
If T^5 is diagonalizable, then T is diagonalizable		
Let T^* be the adjoint of T . If $T^* = 0$, then $T = 0$.		
The matrix of T^* with respect to an arbitrary basis of		,
V is the transpose conjugate of that of T .		

UBC ID:

Question 2. Let $T: V \to V$ be a linear map. (1) Define the kernel¹ Ker(T) of T.

(2) Prove that Ker(T) is a subspace of V.

(3) Prove that T is injective if and only if Ker(T) = 0.

 $^{^{1}\}mathrm{or}$ equivalently, the nullspace.

(4) Give an example of a linear map $T: V \to V$ with $\operatorname{Ker}(T) \neq \operatorname{Ker}(T^2) \neq \operatorname{Ker}(T^3)$.

(5) Suppose that $\operatorname{Ker}(T) = \operatorname{Ker}(T^2)$. Prove that $\operatorname{Ker}(T^2) = \operatorname{Ker}(T^3)$.

UBC ID:

Question 3. Given $x_0, \ldots, x_n, y_0, \ldots, y_n \in \mathbb{C}$ suppose that $x_i \neq x_j$ for $i \neq j$. Prove that there is a unique polynomial $P(x) \in \mathcal{P}_n$ of degree at most n satisfying $P(x_i) = y_i$ for all $i = 0, \ldots, n$.

UBC ID:

Question 4.

(1) Let $v_1, \ldots, v_r \in V$. Define (v_1, \ldots, v_r) is linearly independent.

(2) Let $T: V \to V$ be linear. Suppose that $v_1 \in \text{Ker}(T^2)$, $v_2 \in \text{Ker}(T - \text{Id})$ and $v_3 \in \text{Ker}(T + \text{Id})$ are non-zero vectors. Prove that (v_1, v_2, v_3) is linearly independent.

UBC ID:

Question 5. Let $T: V \to V$ be linear and (v_1, \ldots, v_d) a basis of V. Prove that the following statements are equivalent:

- (1) The matrix of T with respect to the basis (v_1, \ldots, v_d) is upper triangular.
- (2) $T(v_j) \in \operatorname{Span}(v_1, \ldots, v_j)$ for all $j = 1, \ldots, d$.

Name:

UBC ID:

Question 6. Let $T: V \to V$ be linear.

(1) Suppose that $T: V \to V$ is diagonalizable. Prove that there is $S: V \to V$ linear with $S^{\dim(V)} = T$.

(2) Give an example of a complex vector space V of finite dimension and of a non-zero operator $T: V \to V$ with $T^{\dim(V)} = 0$.

(3) Suppose that $T: V \to V$ is a non-cero operator with $T^{\dim(V)} = 0$. Prove that there is no operator $S: V \to V$ with $S^{\dim(V)} = T$.

UBC ID:

Question 7. Let $T: V \to V$ be linear. (1) Define T is normal.

Suppose from now on that $T: V \to V$ is normal and recall that this implies that $||T(v)|| = ||T^*(v)||$ for all $v \in V$.

(2) Prove that $v \in V$ is an eigenvector of T if and only if it is an eigenvector of T^* .

(3) Suppose that $v \in V$ is an eigenvector of T. Prove that the orthogonal complement of Span(v) is T-invariant.

UBC ID:

UBC ID: