Mathematics 312, Section 101. Final Exam

December 17, 2010. Instructor: Z. Reichstein.

This is a closed book exam. You can use one $8.5" \times 11"$ note sheet. No other materials or calculators are allowed. In order to receive credit for a problem you need to show enough work to justify your answer.

Name (Please print):

Student number:

Problem 	Score	Problem 	Score
1		 5 	
2			
3			
4			

Problem 1 (7 marks). Let n be an integer. Show that there does not exist a prime number $p \ge 2$ which divides both 8n + 3 and 5n + 2.

Problem 2 (6 marks). Let $n = 3^{100}$ and $a = 8585 \dots 85$ be the 2*n*-digit number, where the digits 85 repeat *n* times.

(a) Is a divisible by 9?

(b) Is a divisible by 11?

Explain your answers.

Problem 3 (7 marks). Find all three-digit combinations that can occur as the last three digits of a^{100} , where *a* ranges over the integers. Give a simple criterion for predicting which of these possibilities occurs for a given *a*, without computing a^{100} . Prove that your criterion is correct.

Hint: Investigate a^{100} modulo 8 and modulo 125 separately, then use the Chinese Remainder Theorem.

Problem 4 (6 marks). Suppose a positive integer n has 77 positive divisors (1 and n count among them). How many of these divisors can be primes? Explain your answer.

Problem 5 (6 marks). Find all positive integers n such that $\phi(n) = 22$ and prove that there are no others. Here ϕ denotes the Euler ϕ -function.

Problem 6 (6 marks). Recall that an affine cryptosystem, with encryption key $K_E = (26, a, b)$ and decryption key $K_D = (26, c, d)$ works as follows. Each letter is assigned a numerical value, in alphabetical order: $A \mapsto 0, B \mapsto 1, ..., Z \mapsto 25$. These numbers are then viewed modulo 26; they are encrypted by the formula

$$x \longrightarrow y \equiv ax + b \pmod{26}$$

and decrypted by the formula

$$y \longrightarrow x \equiv cy + d \pmod{26}$$
.

It is known that the most frequently occurring letter in the English language is E (with numerical value 4) and the second most frequently occurring letter is T (with numerical value 19). Suppose these letters are encoded as F (numerical value 5) and G (numerical value 6), respectively.

- (a) Find the encryption key K_E .
- (b) Find the decryption key K_D .

Problem 7 (6 marks). Suppose the public key for an RSA cryptosystem is (n, e) = (85, 7) and the secret key is (85, d). Show that this cryptosystem is not secure by finding d.

Remarks: Recall that a message x is encoded by $x \longrightarrow x^e \pmod{n}$ and a received message y is decoded by $y \longrightarrow y^d \pmod{n}$. To make this cryptosystem secure, one needs to use a much larger n.

Problem 8 (6 marks). Prove that the congruence $x^5 \equiv 1 \pmod{52579}$ has exactly one solution, $x \equiv 1 \pmod{52579}$. Use the fact that 52579 is a prime. What other property of 52579 is used in your proof?