100pts; 2.5 hrs
I Short answer questions: Each question carries 6 marks, your answers should quote the results being used and show your work.

1) Find two integers congruent to $3 \bmod 5$ and $4 \bmod 7$.
2) For which positive integers m will we have $1000 \equiv 1 \bmod m$?
3) Find the least positive residue of $1!+2!+\cdots+100$!.
4) Suppose that $n=81294358 X$. Write down a digit in the slot marked X so that n is divisible by a) 11 b) 9 c) 4 .
5) Find all solutions of $7 x \equiv 4 \bmod 13$.
6) Define a Carmichael number. Use the necessary and sufficient condition for a number to be a Carmichael number to show that 561 is a Carmichael number.
7) What is the remainder when 5^{16} is divided by 23 ?

II State whether the following are true or false with full justification. Each question carries 4 marks.

1) If a positive integer has exactly 3 positive divisors, then it is necessarily of the form p^{2} where p is a prime.
2) The order $\operatorname{ord}_{1} 9(5)$ is 7 .
3) The number 25 passes Miller's test for the base 7 .
4) The number $2^{39}-1$ is divisible by 7 .

III Find all positive integers n such that n ! ends with exactly 74 zeros in decimal notation.

14marks
IV Define the sum of divisors function $\sigma(n)$ and number of divisors function $\tau(n)$. Show that there is no positive integer n with $\phi(n)=14$.
\mathbf{V} Show that if a and b are relatively prime integers, then $a^{\phi(b)}+b^{\phi(a)} \equiv 1$ $\bmod a b$. Find the inverse of What is the multiplicative inverse of 5^{8} modulo 16 ?

