Math 313 Topics in Number Theory-Final Exam

April 22, 2013

1. (10 points) Find all solutions (x, y) to the equation $x^{2}-17 y^{2}= \pm 1$ for which $x, y>0$. In other words, find a fundamental solution (x, y) and explain how all other solutions with $x, y>0$ can be generated from it.
2. (10 points) In the ring $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$, show that $\sqrt{-3} \left\lvert\, a+b \frac{1+\sqrt{-3}}{2}\right.$ if and only if $a \equiv b \bmod 3$.
3. (10 points) Suppose that a and b are both k th-power residues mod n. Show that $a b$ is also a k th-power residue. Hint: this is the same as the same proof for quadratic residues mod a prime.
4. (20 points) Let p be a prime, and suppose $x^{2}+x y-3 y^{2}=m p$ where m is some integer and $1<|m|<p$. Find some $a \equiv x \bmod m$ and $b \equiv y \bmod m$ such that $a^{2}+a b-3 b^{2}=k m$ and $|k|<|m|$. Explain briefly why this implies that $\mathbb{Z}\left[\frac{1+\sqrt{13}}{2}\right]$ has unique factorization.
5. (10 points) Suppose that $d \equiv 5 \bmod 8$. Show that there are no elements of norm 2 in $\mathbb{Z}[\sqrt{d}]$; deduce that the element 2 is irreducible in $\mathbb{Z}[\sqrt{d}]$. Show then that $2 \mid d^{2}-d=(d+\sqrt{d})(d-\sqrt{d})$; conclude that 2 is not prime and therefore that there is no unique factorization in $\mathbb{Z}[\sqrt{d}]$. This is similar to but not the same as the homework question asking about the case in which d has a prime factor $p \equiv 5 \bmod 8$; this question covers some additional cases, such as $d=21$.
6. (25 points) Show that the the only integer solutions to the equation $x^{2}+11=$ y^{3} are $x= \pm 4, y=3$ and $x= \pm 58, y=15$; you may quote without proof the fact that there is unique factorization in $\mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right]$. Hint: when I did this problem, in the final step I wrote $(a+b \sqrt{-11})^{3}=x+\sqrt{-11}$ but allowed a and b be half-integers, and then I argued why a priori the only possible values for b are $\pm 1, \pm \frac{1}{2}$.
7. (15 points) Let $\left(\frac{d}{p}\right)=-1$ with p an odd prime. Show that if $x+y \sqrt{d}$ has norm divisible by p then $p \mid x+y \sqrt{d}$. Conclude that if $p \mid\left(x_{1}+y_{1} \sqrt{d}\right)\left(x_{2}+y_{2} \sqrt{d}\right)$ then $p \mid x_{1}+y_{1} \sqrt{d}$ or $p \mid x_{2}+y_{2} \sqrt{d}$.
