The University of British Columbia

Final Exam

Math 316, Sect 201, April 12, 2006

Name (print): \qquad Student No.: \qquad

Closed book examination. Time 2.5 hours.
There are five questions worth a total of 100 marks.
No notes allowed.
Non-programming calculator is not needed (but is allowed).
One self-made formula sheet can be used.
In all questions, you must show work - i.e. display intermediate results - to get full credit. You may use one letter sized formula sheet and a calculator.
Be neat! I will not attempt to decipher messy calculations.

Rules governing examination

- Each candidate should be prepared to produce his/her own library/AMS card upon request.
- No candidates shall be permitted to enter the examination room after the expiration of one half hour, or to leave during the first half hour of examination.
- Candidates are not permitted to ask questions to invigilators, except in cases of supposed errors or ambiguities in examination questions.
- CAUTION - Candidates guilty of any of the following or similar practices shall be immediately dismissed from the examination and shall be liable to disciplinary action: (a) Making use of any books, papers or memoranda, other then those authorized by the examiner; (b) speaking or communicating with other candidates; (c) purposely exposing written papers to the view of other candidates.
- Smoking is not permitted during examination.

Question	1	2	3	4	5	6	
Mark							
Total	8	14	16	16	22	24	100

Final Exam
Math 316, Sect 201, April 12, 2006

Name (print): \qquad
Student No.: \qquad

Problem 1. Find all singular points of the given equation and determine whether each one is regular or irregular.

$$
\left(x^{2}+x-2\right) y^{\prime \prime}+(x+1) y^{\prime}+2 y=0 .
$$

\qquad
Math 316, Sect 201, April 12, 2006
Student No.: \qquad

Problem 2. Consider the ODE

$$
4 x y^{\prime \prime}+2 y^{\prime}+y=0
$$

1. Verify that $x=0$ is a regular singular point.
2. Find the indicial equation.
3. Find the recurrence relation.
4. Find the first three non-zero terms of the both linearly independent series solutions.
5. Find the radii of convergence of the series solutions.

Final Exam
Math 316, Sect 201, April 12, 2006

Name (print): \qquad
Student No.: \qquad

Problem 3. Consider a bar of length 1 whose left end is kept at zero degrees and whose right end is insulated, with some initial heat distribution $f(x)$. State the initial-boundary value problem appropriate for this situation. Find the temperature distribution in the bar at any time t. (Take $c^{2}=1$.)

Final Exam
Math 316, Sect 201, April 12, 2006

Name (print): \qquad
Student No.: \qquad

Problem 4. Solve the initial boundary value for the wave equation $u_{t t}=c^{2} u_{x x}, 0<x<1$, $t>0$ with boundary conditions $u(0, t)=u(1, t)=0$ and initial conditions $u(x, 0)=f(x)$, $u_{t}(x, 0)=g(x)$, where

$$
f(x)=2 \sin 2 \pi x+3 \sin 3 \pi x, \quad g(x)=\sin \pi x .
$$

Final Exam
Math 316, Sect 201, April 12, 2006

Name (print): \qquad
Student No.: \qquad

Problem 5. Solve the 2-dimensional heat problem with u vanishing on the boundary of rectangle $0 \leq x \leq a, 0 \leq y \leq b$ and given initial heat distribution

$$
f(x, y)=8 \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}-\sin \frac{2 \pi x}{a} \sin \frac{3 \pi y}{b} .
$$

Final Exam
Math 316, Sect 201, April 12, 2006

Name (print): \qquad
Student No.: \qquad

Problem 6. Solve the vibrating problem for circular membrane of radius 1 with $c=1$, clamped along its circumference for the given initial data

$$
u(r, \theta, 0)=J_{3}\left(\alpha_{32 r}\right) \sin 3 \theta, \quad u_{t}(r, \theta, 0)=0
$$

where α_{32} is the second positive zero of function J_{3}.

