The University of British Columbia

Final Exam Math 316, Sect 201, April 12, 2006 Closed book examination. Time 2.5 hours. There are five questions worth a total of 100 marks. No notes allowed. Non-programming calculator is not needed (but is allowed). One self-made formula sheet can be used. In all questions, you must show work — i.e. display intermediate results — to get full credit. You may use one letter sized formula sheet and a calculator. Be neat! I will not attempt to decipher messy calculations.

Rules governing examination

- Each candidate should be prepared to produce his/her own library/AMS card upon request.
- No candidates shall be permitted to enter the examination room after the expiration of one half hour, or to leave during the first half hour of examination.
- Candidates are not permitted to ask questions to invigilators, except in cases of supposed errors or ambiguities in examination questions.
- CAUTION Candidates guilty of any of the following or similar practices shall be immediately dismissed from the examination and shall be liable to disciplinary action: (a) Making use of any books, papers or memoranda, other then those authorized by the examiner; (b) speaking or communicating with other candidates; (c) purposely exposing written papers to the view of other candidates.
- Smoking is not permitted during examination.

Question	1	2	3	4	5	6	
Mark							
Total	8	14	16	16	22	24	100

Name (print): ______ Student No.: _____

Problem 1. Find all singular points of the given equation and determine whether each one is regular or irregular.

$$(x^{2} + x - 2)y'' + (x + 1)y' + 2y = 0.$$

Problem 2. Consider the ODE

4xy'' + 2y' + y = 0.

- 1. Verify that x = 0 is a regular singular point.
- 2. Find the indicial equation.
- 3. Find the recurrence relation.
- 4. Find the first three non-zero terms of the both linearly independent series solutions.
- 5. Find the radii of convergence of the series solutions.

Problem 3. Consider a bar of length 1 whose left end is kept at zero degrees and whose right end is insulated, with some initial heat distribution f(x). State the initial-boundary value problem appropriate for this situation. Find the temperature distribution in the bar at any time t. (Take $c^2 = 1$.)

Problem 4. Solve the initial boundary value for the wave equation $u_{tt} = c^2 u_{xx}$, 0 < x < 1, t > 0 with boundary conditions u(0,t) = u(1,t) = 0 and initial conditions u(x,0) = f(x), $u_t(x,0) = g(x)$, where

 $f(x) = 2\sin 2\pi x + 3\sin 3\pi x, \qquad g(x) = \sin \pi x.$

Problem 5. Solve the 2-dimensional heat problem with u vanishing on the boundary of rectangle $0 \le x \le a, 0 \le y \le b$ and given initial heat distribution

$$f(x,y) = 8\sin\frac{\pi x}{a}\sin\frac{\pi y}{b} - \sin\frac{2\pi x}{a}\sin\frac{3\pi y}{b}.$$

Name (print): ______ Student No.: _____

Problem 6. Solve the vibrating problem for circular membrane of radius 1 with c = 1, clamped along its circumference for the given initial data

 $u(r,\theta,0) = J_3(\alpha_{32r})\sin 3\theta, \qquad u_t(r,\theta,0) = 0,$

where α_{32} is the second positive zero of function J_3 .

The end