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ers/recorders/transmitters (including telephones), or other
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aminers.
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dates or imaging devices. The plea of accident or forgetfulness
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• Candidates must not destroy or mutilate any examination material;
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Problem 1 of 10 [10 points]

Consider the curve C given by

r(t) =
1
3
t3 i +

1√
2
t2 j + tk, −∞ < t < ∞.

(1) [3 points] Find the unit tangent T(t) as a function of t.

(2) [4 points] Find the curvature κ(t) as a function of t.

(3) [3 points] Determine the principal normal vector N at the point (8
3 , 2

√
2, 2).
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Problem 2 of 10 [10 points]

A particle of mass m = 1 has position r0 = 1
2 k and velocity v0 = π2

2 i at time t = 0. It moves
under a force

F(t) = −3t i + sin t j + 2e2t k.

(1) [4 points] Determine the position r(t) of the particle depending on t.

(2) [3 points] At what time after time t = 0 does the particle cross the plane x = 0 for the
first time?

(3) [3 points] What is the velocity of the particle when it crosses the plane x = 0 in part
(2)?
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Problem 3 of 10 [8 points]

On the following page, the vector field

F = P (x, y)i + Q(x, y)j

is plotted. In the following questions, give the answer that is best supported by the plot. 1
point for each correct answer, 0 points for each wrong or blank answer.

1. The derivative Px at the point labelled A is (a) positive, (b) negative, (c) zero, (d) there
is not enough information to tell.

2. The derivative Py at the point labelled A is (a) positive, (b) negative, (c) zero, (d) there
is not enough information to tell.

3. The derivative Qx at the point labelled A is (a) positive, (b) negative, (c) zero, (d) there
is not enough information to tell.

4. The derivative Qy at the point labelled A is (a) positive, (b) negative, (c) zero, (d) there
is not enough information to tell.

5. The curl of F at the point labelled A is (a) in the direction of +k (b) in the direction
of −k (c) zero (d) there is not enough information to tell.

6. The work done by the vector field on a particle travelling from point B to point C along
the curve C1 is (a) positive (b) negative (c) zero (d) there is not enough information to
tell.

7. The work done by the vector field on a particle travelling from point B to point C along
the curve C2 is (a) positive (b) negative (c) zero (d) there is not enough information to
tell.

8. The vector field F is (a) the gradient of some function f (b) the curl of some vector
field G (c) not conservative (d) divergence free.

question 1 2 3 4 5 6 7 8

answer
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Problem 4 of 10 [12 points]

A physicist studies a vector field F. From experiments, it is known that F is of the form

F = (x− a)yex i + (xex + z3) j + byz2 k,

where a and b are some real numbers. From theoretical considerations, it is known that F is
conservative.

(1) [3 points] Determine a and b.

(2) [3 points] Find a potential f(x, y, z) such that ∇f = F.

(3) [3 points] Evaluate the line intgeral
∫
C

F · dr where C is the curve defined by r(t) =〈
t, cos2 t, cos t

〉
, 0 ≤ t ≤ π.

(4) [3 points] Evaluate the line integral

I =
∫
C

(x + 1)yex dx + (xex + z3) dy + 4yz2 dz,

where C is the same curve as in part (3). [Note: the “4” in the last term is not a
misprint!].
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Problem 5 of 10 [10 points]

In the following, we use the notation r = x i + y j + z k, r = |r|, and k is some number
k = 0, 1,−1, 2,−2, . . ..

(1) [4 points] Find the value k for which

∇(rk) = −3
r
r5

.

(2) [3 points] Find the value k for which

∇ · (rk r) = 5r2.

(3) [3 points] Find the value k for which

∇2(rk) =
2
r4

.
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Problem 6 of 10 [10 points]

Suppose the surface S is the part of the sphere x2 + y2 + z2 = 2 that lies inside the cylinder
x2 + y2 = 1 and for which z ≥ 0.
Which of the following are parameterizations of S? Write your answer ‘yes’ (Y) or ‘no’ (N)
in the following box. No explanation required. [2 points for a correct answer, 1 point if you
do not answer, 0 if wrong]

1 2 3 4 5

Y/N

(1) r(φ, θ) = 2 sinφ cos θ i + 2 cos φ j + 2 sinφ sin θ k,
0 ≤ φ ≤ π

4 , 0 ≤ θ ≤ 2π.

(2) r(x, y) = x i− y j +
√

2− x2 − y2 k,
x2 + y2 ≤ 1.

(3) r(u, θ) = u sin θ i + u cos θ j +
√

2− u2 k,
0 ≤ u ≤ 2, 0 ≤ θ ≤ 2π.

(4) r(φ, θ) =
√

2 sinφ cos θ i +
√

2 sinφ sin θ j +
√

2 cos φk,
0 ≤ φ ≤ π

4 , 0 ≤ θ ≤ 2π.

(5) r(φ, z) = −
√

2− z2 sinφ i +
√

2− z2 cos φ j + z k,
0 ≤ φ ≤ 2π, 1 ≤ z ≤

√
2.
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Problem 7 of 10 [10 points]

Evaluate the flux integral ∫∫
S

F · dS,

where F(x, y, z) = (x+1) i+(y+1) j+2z k, and S is the part of the paraboloid z = 4−x2−y2

that lies above the triangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x. S is oriented so that its unit normal
has a negative z-component.
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Problem 8 of 10 [10 points]

Let C be the oriented curve consisting of the 5 line segments which form the paths from
(0, 0, 0) to (0, 1, 1), from (0, 1, 1) to (0, 1, 2), from (0, 1, 2) to (0, 2, 0), from (0, 2, 0) to (2, 2, 0),
and from (2, 2, 0) to (0, 0, 0). Let

F = (−y + ex sinx)i + y4j +
√

z tan zk.

Evaluate the integral
∫
C F · dr.
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Problem 9 of 10 [10 points]

Let S be the part of the paraboloid z = 2− x2 − y2 contained in the cone z =
√

x2 + y2 and
oriented in the upward direction. Let

F = (tan
√

z + sin(y3))i + e−x2
j + zk.

Evaluate the flux integral
∫∫

S F · dS.
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Problem 10 of 10 [10 points]

Which of the following statements are true (T) and which are false (F)? Write your answers
in the following box. You do not need to give reasons. [1 point for a correct answer, 0.5 points
if you do not answer, 0 if wrong]

1 2 3 4 5 6 7 8 9 10

T/F

(1) The curve defined by

r1(t) = cos(t2) i + sin(t2) j + 2t2 k, −∞ < t < ∞,

is the same as the curve defined by

r2(t) = cos t i + sin t j + 2tk, −∞ < t < ∞.

(2) The curve defined by

r1(t) = cos(t2) i + sin(t2) j + 2t2 k, 0 ≤ t ≤ 1,

is the same as the curve defined by

r2(t) = cos t i + sin t j + 2tk, 0 ≤ t ≤ 1.

(3) If a smooth curve is parameterized by r(s) where s s arc length, then its tangent vector
satisfies

|r′(s)| = 1.

(4) If r(t) defines a smooth curve C in space that has constant curvature κ > 0, then C is
part of a circle with radius 1/κ.

(5) If the speed of a moving object is constant, then its acceleration is orthogonal to its
velocity.

(6) The vector field

F(x, y, z) =
−y

x2 + y2
i +

x

x2 + y2
j + zk

is conservative.

(7) Suppose the vector field F(x, y, z) is defined on an open domain and its components
have continuous partial derivatives. If ∇× F = 0, then F is conservative.

(8) The region D = { (x, y) | x2 + y2 > 1 } is simply connected.

(9) The region D = { (x, y) | y − x2 > 0 } is simply connected.

(10) If F is a vector field whose components have continuous partial derivatives, then∫∫
S

curlF · n dS = 0

when S is the boundary of a solid region E in R3.


