Final Exam

December 11, 2013
19:00-21:30
No books. No notes. No calculators. No electronic devices of any kind.

Problem 1. (5 points)
(a) Consider the parametrized space curve

$$
\vec{r}(t)=\left\langle t^{2}, t, t^{3}\right\rangle
$$

Find an equation for the normal plane at the point $\langle 1,1,1\rangle$.
(b) Find the curvature of the curve from (a) as a function of the parameter t.

Problem 2. (5 points)
(a) Let

$$
\vec{r}(t)=\left\langle t^{2}, 3, \frac{1}{3} t^{3}\right\rangle .
$$

Find the unit tangent vector to this parametrized curve at $t=1$, pointing in the direction of increasing t.
(b) Find the arc length of the curve from (a) between the points $(0,3,0)$ and $\left(1,3,-\frac{1}{3}\right)$.

Problem 3. (6 points)
(a) Consider the vector field

$$
\vec{F}(x, y, z)=\left\langle z+e^{y}, x e^{y}-e^{z} \sin y, 1+x+e^{z} \cos y\right\rangle
$$

Find the curl of \vec{F}. Is \vec{F} conservative?
(b) Find the integral $\int_{C} \vec{F} \cdot d \vec{r}$ of the field \vec{F} from (a) where C is the curve with parametrization

$$
\vec{r}(t)=\left\langle t^{2}, \sin t, \cos ^{2} t\right\rangle
$$

where t ranges from 0 to π.

Problem 4. (6 points)
(a) Consider the vector field $\vec{F}(x, y, z)=\left\langle z^{2}, x^{2}, y^{2}\right\rangle$ in \mathbb{R}^{3}. Compute the line integral $\oint_{C} \vec{F} \cdot d \vec{r}$, where C is the curve conisting of the three line segments, L_{1} from $(2,0,0)$ to $(0,2,0)$, then L_{2} from $(0,2,0)$ to $(0,0,2)$, and finally L_{3} from $(0,0,2)$ to $(2,0,0)$.
(b) A simple closed curve C lies in the plane $x+y+z=2$. The surface this curve C surrounds inside the plane $x+y+z=2$ has area 3 . The curve C is oriented in a counterclockwise direcction as observed from the positive x-axis. Compute the line integral $\oint_{C} \vec{F} \cdot d \vec{r}$, where F is as in (a).

Problem 5. (6 points)
(a) Find a parametrization of the surface S of the cone whose vertex is at the point $(0,0,3)$, and whose base is the circle $x^{2}+y^{2}=4$ in the $x y$-plane. Only the cone surface belongs to S, not the base. Be careful to include the domain for the parameters.
(b) Find the z-coordinate of the centre of mass of the surface S from (a).

Problem 6. (6 points)
(a) Find an upward pointing unit normal vector to the surface $z=x y$ at the point $(1,1,1)$.
(b) Now consider the part of the surface $z=x y$, which lies within the cylinder $x^{2}+y^{2}=9$ and call it S. Compute the upward flux of $\vec{F}=\langle y, x, 3\rangle$ through S.
(c) Find the flux of $\vec{F}=\langle y, x, 3\rangle$ through the cylindrical surface $x^{2}+y^{2}=9$ in between $z=x y$ and $z=10$. The orientation is outward, away from the z-axis.

Problem 7. (6 points)
(a) Find the divergence of the vector field $\vec{F}=\left\langle x+\sin y, z+y, z^{2}\right\rangle$.
(b) Find the flux of \vec{F} through the upper hemisphere $x^{2}+y^{2}+z^{2}=25, z \geq 0$, oriented in positive z-direction.
(c) Specify an oriented closed surface S, such that the flux $\iint_{S} \vec{F} \cdot d \vec{S}$ is equal to -9 .

Problem 8. (10 points)
True or false? Put the answers in your exam booklet, please. No justifictions necessary.

1. $\vec{\nabla} \cdot(\vec{a} \times \vec{r})=0$, where \vec{a} is a constant vector in \mathbb{R}^{3}, and \vec{r} is the vector field $\vec{r}=\langle x, y, z\rangle$.
2. $\vec{\nabla} \times(\vec{\nabla} f)=\overrightarrow{0}$, for all scalar fields f on \mathbb{R}^{3} with continuous second partial derivatives.
3. $\operatorname{div}(f \vec{F})=\overrightarrow{\operatorname{grad}}(f) \cdot \vec{F}+f \operatorname{div} \vec{F}$, for every vector field \vec{F} in \mathbb{R}^{3} with continuous partial derivatives, and every scalar function f in \mathbb{R}^{3} with continuous partial derivatives.
4. Suppose \vec{F} is a vector field with continuous partial derivatives in the region D, where D is \mathbb{R}^{3} without the origin. If $\operatorname{div} \vec{F}>0$ throughout D, then the flux of \vec{F} through the sphere of radius 5 with center at the origin is positive.
5. Suppose \vec{F} is a vector field with continuous partial derivatives in all of \mathbb{R}^{3}. Suppose further, that $\vec{\nabla} \times \vec{F}$ has positive z-component everywhere in \mathbb{R}^{3}. Then

$$
\int_{0}^{\pi} \vec{F} \cdot\langle\cos \theta, \sin \theta, 0\rangle d \theta>\int_{0}^{\pi} \vec{F} \cdot\langle\cos \theta,-\sin \theta, 0\rangle d \theta
$$

6. If a vector field \vec{F} is defined and has continuous partial derivatives everywhere in \mathbb{R}^{3}, and it satisfies $\operatorname{div} \vec{F}=0$, everywhere, then, for every sphere, the flux out of one hemisphere is equal to the flux into the opposite hemisphere.
7. If $\vec{r}(t)$ is a twice continuously differentiable path in \mathbb{R}^{2} with constant curvature κ, then $\vec{r}(t)$ parametrizes part of a circle of radius $1 / \kappa$.
8. The vector field $\vec{F}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$ is conservative in its domain, which is \mathbb{R}^{2} without the origin.
9. If a vector field $\vec{F}=\langle P, Q\rangle$ in \mathbb{R}^{2} has $Q=0$ everywhere in \mathbb{R}^{2}, then the line integral $\oint \vec{F} \cdot d \vec{r}$ is zero, for every simple closed curve in \mathbb{R}^{2}.
10. If the acceleration and the speed of a moving particle in \mathbb{R}^{3} are constant, then the motion is taking place along a spiral.
