This final exam has 6 questions on 12 pages, for a total of 60 points.

Duration: 3 hours

- Write your name or your student number on every page.
- You need to show enough work to justify your answers.
- Continue on the back of the previous page if you run out of space. You also have extra space at the end of the booklet.
- This is a closed-book examination. None of the following are allowed: documents or electronic devices of any kind (including calculators, cell phones, etc.)

LAST name: \qquad

First name: (including all middle names): \qquad

Student Number: \qquad

Signature: \qquad

Circle the name of your instructor: Rachel Ollivier Justin Tzou

Question:	1	2	3	4	5	6	Total
Points:	10	8	10	10	10	12	60
Score:							

We recall that for a vector field \mathbf{F} in \mathbb{R}^{3}, we have:

$$
\begin{gathered}
\operatorname{curl}(\mathbf{F})=\nabla \times \mathbf{F} \\
\operatorname{div}(\mathbf{F})=\nabla \cdot \mathbf{F} .
\end{gathered}
$$

The unit tangent vector $\mathbf{T}(t)$, principal unit normal vector $\mathbf{N}(t)$, binormal vector $\mathbf{B}(t)$, and curvature $\kappa(t)$, of a curve in \mathbb{R}^{3} parameterized by $\mathbf{r}(t)$ are given by

$$
\begin{gathered}
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}, \quad \mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}, \quad \mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t) \\
\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}
\end{gathered}
$$

The volume of a sphere with radius a is $\frac{4}{3} \pi a^{3}$.

1. Consider the closed region enclosed by the curves $y=x^{2}+4 x+4$ and $y=4-x^{2}$. Let C be its boundary and suppose that C is oriented counter-clockwise.

2 marks
8 marks
(a) Draw the oriented curve C carefully in the $x-y$-plane.
(b) Determine the value of

$$
\oint_{C} x y d x+\left(e^{y}+x^{2}\right) d y .
$$

Hint: do not compute the integral directly.
2. Consider the vector field $\mathbf{F}(x, y, z)=\left\langle\cos x, 2+\sin y, e^{z}\right\rangle$.

1 mark
1 mark 6 marks
(a) Compute the curl of \mathbf{F}.
(b) Is there a function f such that $\mathbf{F}=\nabla f$? Justify your answer.
(c) Compute the integral of \mathbf{F} along the curve C parametrized by $\mathbf{r}(t)=\langle t, \cos t, \sin t\rangle$ with $0 \leq t \leq 3 \pi$.
3. Let S be the sphere of radius 3 , centered at the origin and with outward orientation. Given the vector field $\mathbf{F}(x, y, z)=\langle 0,0, x+z\rangle$:

7 marks (a) Calculate (using the definition) the flux of \mathbf{F} through S

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S} .
$$

That is, compute the flux by evaluating the surface integral directly.
Hint: if you give a parametrization $\mathbf{r}(\theta, \phi)$ of the sphere using the usual θ, ϕ of the spherical coordinates, then $\mathbf{r}_{\theta} \times \mathbf{r}_{\phi}$ and $\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}$ both give a vector of the form $\alpha(\phi) \mathbf{r}(\theta, \phi)$ for some function $\alpha(\phi)$. Determining which one to use is important in the calculation above. Here, ϕ is the angle measured from the positive z-axis.

3 marks (b) Calculate the same flux using the divergence theorem.
4. We consider the cone with equation $z=\sqrt{x^{2}+y^{2}}$. Note that its tip, or vertex, is located at the origin $(0,0,0)$. The cone is oriented in such a way that the normal vectors point downwards (and away from the z axis). In the parts below, both S_{1} and S_{2} are oriented this way.
Let $\mathbf{F}=\langle-z y, z x, x y \cos (y z)\rangle$.

5 marks
(a) Let S_{1} be the part of the cone that lies between the planes $z=0$ and $z=4$. Note that S_{1} does not include any part of the plane $z=4$. Use Stokes' theorem to determine the value of

$$
\iint_{S_{1}} \nabla \times \mathbf{F} \cdot d \mathbf{S}
$$

Make a sketch indicating the orientations of S_{1} and of the contour(s) of integration.
(b) Let S_{2} be the part of the cone that lies below the plane $z=4$ and above $z=1$. Note that S_{2} does not include any part of the planes $z=1$ and $z=4$. Determine the flux of $\nabla \times \mathbf{F}$ across S_{2}. Justify your answer, including a sketch indicating the orientations of S_{2} and of the contour(s) of integration.

10 marks
5. Consider the cube of side length 1 that lies entirely in the first octant $(x \geq 0, y \geq 0, z \geq 0)$ with one corner at the origin and another corner at point $(1,1,1)$. As such, one face lies in the plane $x=0$, one lies in the plane $y=0$, and another lies in the plane $z=0$. The other three faces lie in the planes $x=1, y=1$, and $z=1$.

Denote S as the open surface that consists of the union of the 5 faces of the cube that do not lie in the plane $z=0$. The surface S is oriented in such a way that the unit normal vectors point outwards (that is, the orientation of S is such that the unit normal vectors on the top face point towards positive z-directions). Determine the value of

$$
I=\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

where \mathbf{F} is the vector field given by

$$
\mathbf{F}=\left\langle y \cos \left(y^{2}\right)+z-1, \frac{z}{x+1}+1, x y e^{z^{2}}\right\rangle .
$$

Hint: do not compute the integral directly. .
6. Consider the curve C in 3 dimensions given by

$$
\mathbf{r}(t)=2 t \mathbf{i}+t^{2} \mathbf{j}+\sqrt{3} t^{2} \mathbf{k}
$$

for $t \in \mathbb{R}$.
1 mark (a) Compute the unit tangent vector $\mathbf{T}(t)$.
It will be a vector of the form $\mathbf{T}(t)=\frac{\langle 1, a t, b t\rangle}{\sqrt{1+4 t^{2}}}$ where a and b are nonzero constant real numbers.

1 mark

1 mark

2 marks

1 mark

1 mark

1 mark

4 marks
(b) Compute the unit normal vector $\mathbf{N}(t)$.

It will be a vector of the form $\mathbf{N}(t)=\frac{\langle-4 t, \alpha, \beta\rangle}{2 \sqrt{1+4 t^{2}}}$ where α and β are nonzero constant real numbers.
(c) Show that the binormal vector \mathbf{B} to this curve does not depend on t and is one of the following vectors:

$$
\text { (1) }\left(\begin{array}{c}
1 / 2 \\
-\sqrt{3} / 2 \\
0
\end{array}\right) \quad(2)\left(\begin{array}{c}
0 \\
\sqrt{3} / 2 \\
1 / 2
\end{array}\right) \quad(3)\left(\begin{array}{c}
0 \\
-\sqrt{3} / 2 \\
1 / 2
\end{array}\right) \quad \text { (4) }\left(\begin{array}{c}
0 \\
-1 / 2 \\
\sqrt{3} / 2
\end{array}\right) \text {. }
$$

This implies that C is a plane curve.
(d) According to your choice of vector (1) (2) (3) or (4), give the equation of the plane containing C. You can get credit for this question even if your choice of vector is wrong.
(e) Compute the curvature $\kappa(t)$ of the curve.

It will be a function of the form $\kappa(t)=\frac{\gamma}{\left(1+4 t^{2}\right)^{3 / 2}}$, where γ is a positive constant real number.
(f) Are there point(s) where the curvature is maximal? If yes, give the coordinates of the point(s). If no, justify your answer.
(g) Are there point(s) where the curvature is minimal? If yes, give the coordinates of the point(s). If no, justify your answer.
(h) Let

$$
\mathbf{u}:=2 \mathbf{i}, \quad \mathbf{v}:=\mathbf{j}+\sqrt{3} \mathbf{k}, \quad \mathbf{w}:=-\sqrt{3} \mathbf{j}+\mathbf{k}
$$

i) Express i, \mathbf{j}, \mathbf{k} in terms of $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
ii) Using i), write $\mathbf{r}(t)$ in the form

$$
a(t) \mathbf{u}+b(t) \mathbf{v}+c(t) \mathbf{w}
$$

where $a(t), b(t)$ and $c(t)$ are functions you have to determine. You should find that one of these functions is zero.
iii) Draw the curve given by $\langle a(t), b(t)\rangle$ in the $x-y$-plane.
iv) Is the drawing consistent with parts (f) and (g)? Explain.

