This final exam has 6 questions on 12 pages, for a total of 60 points.

Duration: 3 hours

- Write your name or your student number on **every** page.
- You need to show enough work to justify your answers.
- Continue on the **back of the previous page** if you run out of space. You also have extra space at the end of the booklet.
- This is a closed-book examination. None of the following are allowed: documents or electronic devices of any kind (including calculators, cell phones, etc.)

LAST name:
First name: (including all middle names):
Standard Marshaw
Student Number:
Signature:

Circle the name of your instructor: Rachel Ollivier Justin Tzou

Question:	1	2	3	4	5	6	Total
Points:	10	8	10	10	10	12	60
Score:							

We recall that for a vector field \mathbf{F} in \mathbb{R}^3 , we have:

$$\operatorname{curl}(\mathbf{F}) = \nabla \times \mathbf{F}$$

 $\operatorname{div}(\mathbf{F}) = \nabla \cdot \mathbf{F}.$

The unit tangent vector $\mathbf{T}(t)$, principal unit normal vector $\mathbf{N}(t)$, binormal vector $\mathbf{B}(t)$, and curvature $\kappa(t)$, of a curve in \mathbb{R}^3 parameterized by $\mathbf{r}(t)$ are given by

$$\begin{split} \mathbf{T}(t) &= \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \,, \qquad \mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|} \,, \qquad \mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t) \\ &\kappa(t) = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3} \,. \end{split}$$

The volume of a sphere with radius a is $\frac{4}{3}\pi a^3$.

2 marks

8 marks

- 1. Consider the closed region enclosed by the curves $y = x^2 + 4x + 4$ and $y = 4 x^2$. Let C be its boundary and suppose that C is oriented counter-clockwise.
 - (a) Draw the **oriented** curve C carefully in the x y-plane.
 - (b) Determine the value of

$$\oint_C xy \, dx + (e^y + x^2) \, dy.$$

Hint: do not compute the integral directly.

- 2. Consider the vector field $\mathbf{F}(x, y, z) = \langle \cos x, 2 + \sin y, e^z \rangle$.
- 1 mark

6 marks

- (a) Compute the curl of **F**.
- (b) Is there a function f such that $\mathbf{F} = \nabla f$? Justify your answer.
- (c) Compute the integral of **F** along the curve C parametrized by $\mathbf{r}(t) = \langle t, \cos t, \sin t \rangle$ with $0 \le t \le 3\pi$.

- 3. Let S be the sphere of radius 3, centered at the origin and with outward orientation. Given the vector field $\mathbf{F}(x, y, z) = \langle 0, 0, x + z \rangle$:
- 7 marks (a) Calculate (using the definition) the flux of \mathbf{F} through S

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S}.$$

That is, compute the flux by evaluating the surface integral directly. *Hint:* if you give a parametrization $\mathbf{r}(\theta, \phi)$ of the sphere using the usual θ, ϕ of the spherical coordinates, then $\mathbf{r}_{\theta} \times \mathbf{r}_{\phi}$ and $\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}$ both give a vector of the form $\alpha(\phi)\mathbf{r}(\theta, \phi)$ for some function $\alpha(\phi)$. Determining which one to use is important in the calculation above. Here, ϕ is the angle measured from the positive z-axis.

3 marks (b) Calculate the same flux using the divergence theorem.

5 marks

4. We consider the cone with equation $z = \sqrt{x^2 + y^2}$. Note that its tip, or vertex, is located at the origin (0, 0, 0). The cone is oriented in such a way that the normal vectors point downwards (and away from the z axis). In the parts below, both S_1 and S_2 are oriented this way.

Let $\mathbf{F} = \langle -zy, zx, xy \cos(yz) \rangle$.

(a) Let S_1 be the part of the cone that lies between the planes z = 0 and z = 4. Note that S_1 does not include any part of the plane z = 4. Use Stokes' theorem to determine the value of

$$\iint_{S_1} \nabla \times \mathbf{F} \cdot d\mathbf{S} \, .$$

Make a sketch indicating the orientations of S_1 and of the contour(s) of integration.

5 marks (b) Let S_2 be the part of the cone that lies below the plane z = 4 and above z = 1. Note that S_2 does not include any part of the planes z = 1 and z = 4. Determine the flux of $\nabla \times \mathbf{F}$ across S_2 . Justify your answer, including a sketch indicating the orientations of S_2 and of the contour(s) of integration.

10 marks 5. Consider the cube of side length 1 that lies entirely in the first octant $(x \ge 0, y \ge 0, z \ge 0)$ with one corner at the origin and another corner at point (1, 1, 1). As such, one face lies in the plane x = 0, one lies in the plane y = 0, and another lies in the plane z = 0. The other three faces lie in the planes x = 1, y = 1, and z = 1.

Denote S as the **open** surface that consists of the union of the 5 faces of the cube **that** do not lie in the plane z = 0. The surface S is oriented in such a way that the unit normal vectors point outwards (that is, the orientation of S is such that the unit normal vectors on the top face point towards positive z-directions). Determine the value of

$$I = \iint_S \mathbf{F} \cdot d\mathbf{S} \,,$$

where \mathbf{F} is the vector field given by

$$\mathbf{F} = \langle y \cos(y^2) + z - 1, \, \frac{z}{x+1} + 1, \, xye^{z^2} \rangle \,.$$

Hint: do not compute the integral directly. .

6. Consider the curve C in 3 dimensions given by

$$\mathbf{r}(t) = 2t\mathbf{i} + t^2\mathbf{j} + \sqrt{3}t^2\mathbf{k}$$

for $t \in \mathbb{R}$.

- $\begin{array}{c|c} \underline{1 \text{ mark}} \\ \hline \end{array} \qquad (a) \quad \text{Compute the unit tangent vector } \mathbf{T}(t). \\ It \ will \ be \ a \ vector \ of \ the \ form \ \mathbf{T}(t) = \frac{\langle 1, at, bt \rangle}{\sqrt{1+4t^2}} \ where \ a \ and \ b \ are \ nonzero \ constant \ real \ numbers. \end{array}$
- (b) Compute the unit normal vector $\mathbf{N}(t)$. It will be a vector of the form $\mathbf{N}(t) = \frac{\langle -4t, \alpha, \beta \rangle}{2\sqrt{1+4t^2}}$ where α and β are nonzero constant real numbers.
- 1 mark

1 mark

1 mark

 $1 \mathrm{mark}$

(c) Show that the binormal vector \mathbf{B} to this curve does not depend on t and is one of the following vectors:

$$\begin{array}{c}
\left(1)\begin{pmatrix}1/2\\-\sqrt{3}/2\\0\end{array}\right) \quad \left(2)\begin{pmatrix}0\\\sqrt{3}/2\\1/2\end{array}\right) \quad \left(3)\begin{pmatrix}0\\-\sqrt{3}/2\\1/2\end{array}\right) \quad \left(4)\begin{pmatrix}0\\-1/2\\\sqrt{3}/2\\\sqrt{3}/2\end{array}\right)$$

This implies that C is a plane curve.

- - (e) Compute the curvature $\kappa(t)$ of the curve. It will be a function of the form $\kappa(t) = \frac{\gamma}{(1+4t^2)^{3/2}}$, where γ is a positive constant real number.
 - (f) Are there point(s) where the curvature is maximal? If yes, give the coordinates of the point(s). If no, justify your answer.
 - (g) Are there point(s) where the curvature is minimal? If yes, give the coordinates of the point(s). If no, justify your answer.
- 4 marks (h) Let

$$\mathbf{u} := 2\mathbf{i}, \quad \mathbf{v} := \mathbf{j} + \sqrt{3}\mathbf{k}, \quad \mathbf{w} := -\sqrt{3}\mathbf{j} + \mathbf{k}.$$

- i) Express i, j, k in terms of u, v, w.
- ii) Using i), write $\mathbf{r}(t)$ in the form

$$a(t)\mathbf{u} + b(t)\mathbf{v} + c(t)\mathbf{w}$$

where a(t), b(t) and c(t) are functions you have to determine. You should find that one of these functions is zero.

- iii) Draw the curve given by $\langle a(t), b(t) \rangle$ in the x y-plane.
- iv) Is the drawing consistent with parts (f) and (g)? Explain.