Math 320, Fall 2007 Final, December 17

Name:

SID:

Instructions

- The total time is 2 hours and 30 minutes.
- The total score is 100 points.
- Use the reverse side of each page if you need extra space.
- Show all your work. A correct answer without intermediate steps will receive no credit.
- Calculators and cheat sheets are not allowed.

Problem	Points	Score
1	15	
2	10	
3	20	
4	15	
5	15	
6	25	
TOTAL	100	

1. Recall that a function $f:(M, d) \rightarrow(M, d)$ is called a strict contraction if there exists a constant $\alpha<1$ such that

$$
d(f(x), f(y)) \leq \alpha d(x, y) \quad \text { for all } x, y \in M
$$

(a) Is a strict contraction continuous? Uniformly continuous?
(b) Show that for every $x \in M$, the sequence of functional iterates $\left\{f^{(n)}(x): n \in \mathbb{N}\right\}$ is a Cauchy sequence.
(c) Use parts (a) and (b) to show that if M is complete and f is a strict contraction, then f has a fixed point, i.e., there exists $x_{0} \in M$ such that $f\left(x_{0}\right)=x_{0}$.
(d) Is the fixed point in part (c) unique?
(2 points)
2. Recall the normed vector space

$$
\begin{aligned}
& \ell_{p}=\left\{\mathbf{x}=\left(x_{1}, x_{2}, \cdots\right): \sum_{n=1}^{\infty}\left|x_{n}\right|^{p}<\infty\right\} \\
& \quad \text { with norm }\|\mathbf{x}\|_{p}=\left[\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right]^{\frac{1}{p}}
\end{aligned}
$$

Is the set

$$
A=\left\{\mathbf{x} \in \ell_{3}:\left|x_{n}\right|^{3} \leq \frac{1}{n} \text { for all } n \in \mathbb{N}\right\}
$$

compact in ℓ^{3} ?
3. (a) Describe the closure of the set

$$
E=\left\{\left(x, \cos \left(\frac{1}{x^{2}}\right)\right): 0<x \leq 1\right\} \subseteq \mathbb{R}^{2}
$$

(5 points)
(b) Is the set \bar{E} path-connected, where E is as in part (a)? Explain.
(c) Repeat the question in part (b) for the closure of the set

$$
F=\left\{\left(x, \arctan \left(\frac{1}{x^{2}}\right)\right): 0<x \leq 1\right\}
$$

(5 points)
4. (a) Recall the Hilbert cube

$$
\begin{gathered}
\mathbb{H}^{\infty}=\left\{\mathbf{x}=\left(x_{1}, x_{2}, \cdots\right):\left|x_{n}\right| \leq 1 \text { for all } n \in \mathbb{N}\right\} \\
\text { with metric } d(\mathbf{x}, \mathbf{y})=\sum_{n=1}^{\infty} 2^{-n}\left|x_{n}-y_{n}\right|
\end{gathered}
$$

Show that \mathbb{H}^{∞} is separable, i.e., there exists a countable subset $A \subseteq \mathbb{H}^{\infty}$ such that $\bar{A}=\mathbb{H}^{\infty}$.
(b) Give an example of a non-separable metric space, with reasons for your answer.
(5 points)
5. Suppose $\left\{a_{n}: n \in \mathbb{N}\right\}$ is a sequence of strictly positive numbers such that $\sum_{n=1}^{\infty} a_{n}$ diverges. Let s_{n} denote the n-th partial sum of this series, i.e., $s_{n}=a_{1}+\cdots+a_{n}$.
(a) Determine the convergence or divergence of $\sum_{n=1}^{\infty} a_{n} / s_{n}$. Hint : First show that

$$
\left.\frac{a_{N+1}}{s_{N+1}}+\cdots+\frac{a_{N+k}}{s_{N+k}} \geq 1-\frac{s_{N}}{s_{N+k}} .\right]
$$

(b) Repeat the question in part (a) with $\sum_{n=1}^{\infty} a_{n} /\left(1+a_{n} \sqrt{n}\right)$.
(8 points)
6. Give brief answers to the following questions: ($5 \times 5=25$ points)
(a) Any connected metric space with more than one point is uncountable. True or false?
(b) There exists a metric space M such that there is no continuous map from M to any other metric space. True or false?
(c) Given any continuous function $f:[a, b] \rightarrow \mathbb{R}$, there exists $c \in[a, b]$ satisfying

$$
\int_{a}^{b} f(t) d t=f(c)(b-a) .
$$

True or false?
(d) State the strong nested set property. Give an example of a metric space that does not have the strong nested set property. Provide reasons for your answer.
(e) Let $S=\left\{r_{1}+r_{2} \pi: r_{1}, r_{2} \in \mathbb{Q}\right\}$. Does there exist a function $f: \mathbb{R} \rightarrow \mathbb{R}$ whose set of discontinuities is $\mathbb{R} \backslash S$?

