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Marks

[9] 1. Define

(a) uniform convergence of a sequence of functions

(b) an algebra of functions that vanishes nowhere

(c) an atlas and a maximal atlas

Continued on page 3
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[16] 2. Give an example of each of the following, together with a brief explanation of your example.
If an example does not exist, explain why not.

(a) a function f : [0, 1] → IR which is Riemann integrable on [0, 1] but for which the function
F : [0, 1] → IR defined by F (x) =

∫ x

0
f(t) dt is not Riemann integrable on [0, 1]

(b) a sequence of functions that converges to zero pointwise on [0, 1] and uniformly on [ε, 1−ε]
for every ε > 0, but does not converge uniformly on [0, 1]

(c) a Fourier series
∞
∑

n=−∞
cneinx that does not converge in the mean

(d) two charts for (−1, 1) (with the usual metric) that are not compatible

Continued on page 4
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[15] 3. Let α, f, g : [a, b] → IR with α an increasing function.

(a) Prove that
¯∫ b

a

(f + g) dα ≤
¯∫ b

a

f dα +
¯∫ b

a

g dα

(b) Either prove that
¯∫ b

a

(f + g) dα =
¯∫ b

a

f dα +
¯∫ b

a

g dα

or provide a counterexample.

Continued on page 6
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[15] 4. Let f : [0, 1] → IR have a continuous derivative. Prove directly from the definition of “integral”

that
∫ 1

0
f ′(x) dx exists and equals f(1) − f(0).

Continued on page 8
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[15] 5. Let
{

fn

}

n∈IN
be a uniformly convergent sequence of continuous real–valued functions defined

on a metric space M and let g be a continuous function on IR. Define, for each n ∈ IN,
hn(x) = g

(

fn(x)
)

.

(a) Let M = [0, 1]. Prove that the sequence
{

hn

}

n∈IN
converges uniformly on [0, 1].

(b) Let M = IR. Either prove that the sequence
{

hn

}

n∈IN
converges uniformly on IR or

provide a counterexample.

Continued on page 9
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[15] 6. Let f , f0, f1, · · · be real–valued Riemann integrable functions on the bounded interval [a, b].
Assume that

∫ b

a

fn(x)fm(x) dx =

{

1 if m = n

0 if m 6= n

Prove that

lim
n→∞

∫ b

a

f(x)fn(x) dx = 0

Continued on page 11
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[15] 7. Let α > 0. A function f : IR → IR is said to be Hölder continuous of exponent α if the quantity

‖f‖α = sup
x6=y

|f(x)−f(y)|
|x−y|α

is finite. Let
{

fn

}

n∈IN
be a sequence of Hölder continuous real valued functions on IR that

obey supx∈IR |fn(x)| ≤ 1 and ‖fn‖α ≤ 1 for all n ∈ IN. Prove that there is a continuous
function f : IR → IR and a subsequence of

{

fn

}

n∈IN
that converges pointwise to f and that

furthermore converges uniformly to f on [−M,M ] for every M > 0.

Continued on page 13
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The End
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