THE UNIVERSITY OF BRITISH COLUMBIA SESSIONAL EXAMINATIONS – DECEMBER 2009 MATHEMATICS 322

Time: 2 hours 30 minutes

- 1. [16 points] Determine whether the following statements are true or false (you have to include proofs/counterexamples):
 - (a) The rings $\mathbb{Z}/35\mathbb{Z}$ and $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$ are isomorphic.
 - (b) The groups $\mathbb{Z}/24\mathbb{Z}$ and $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ are isomorphic.
 - (c) If G is a cyclic group of order n, and d|n, then G has a subgroup of order d.
 - (d) The groups $\mathbb{F}_{p^2}^*$ and $(\mathbb{Z}/p^2\mathbb{Z})^*$ are isomorphic.
- **2.** [13 points]
 - (a) Let G be a group, and N a normal subgroup of G. Prove that if N contains an element g, then N contains the entire conjugacy class of g.
 - (b) Let σ be the following element of S_4 :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}$$

Find the number of elements in the conjugacy class of σ .

- (c) Prove that the permutation σ from Part (b) cannot be contained in any proper normal subgroup of S_4 .
- **3.** [8 points] Let M and N be normal subgroups of a group G. Suppose that $M \cap N = \{e\}$. Prove that for every $m \in M$ and $n \in N$, mn = nm.
- 4. [12 points] Find the set of units and the set of zero divisors in the ring R, where:
 - (a) R is the ring $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
 - (b) Let R is the quotient ring $\mathbb{Z}[\sqrt{7}]/I$, where I is the ideal

$$I = \{a + b\sqrt{7} \mid 6|a - b\}.$$

(Hint: find a convenient homomorphism from $\mathbb{Z}[\sqrt{7}]$ to $\mathbb{Z}/6\mathbb{Z}$).

- **5.** [10 points] Let $R = \mathbb{F}_5[x]$; let $I = \langle x^2 + 1 \rangle$ be the ideal in R generated by the polynomial $x^2 + 1$, and let $J = \langle x^3 + 2 \rangle$ be the ideal generated by the polynomial $x^3 + 2$. Prove that I + J is a principal ideal in R, and find its generator.
- **6.** [10 points]
 - (a) Factor the element $5 \in \mathbb{Z}[i]$ as a product of irreducible elements.
 - (b) Is $\langle 5 \rangle$ a maximal ideal in $\mathbb{Z}[i]$?
- **7.** [15 points]
 - (a) Prove that the polynomial $x^3 + 2x + 1$ is irreducible in $\mathbb{F}_3[x]$.
 - (b) Let I be the ideal $I = \langle x^3 + 2x + 1 \rangle$ in $\mathbb{F}_3[x]$, and let $R = \mathbb{F}_3[x]/I$. Let $\alpha = x + I \in \mathbb{R}$. Prove that the element $1 + \alpha$ has an inverse in \mathbb{R} .
 - (c) Find $(1 + \alpha)^{-1}$ (that is, find $\gamma \in R$, such that $\gamma(1 + \alpha) = 1$).
- 8. [8 points] Is $\mathbb{Z}[\sqrt{-3}]$ a principal ideal domain?
- **9.** [8 points] Let G be a group acting on a set X. Suppose that the stabilizer G_x of a certain point $x \in X$ is a proper normal subgroup of G. Prove that every element of G_x fixes every point $y \in O_x$.

Extra credit problems:

- **1.** Describe the quotient ring $\mathbb{Z}[i]/\langle 3 \rangle$.
- **2.** Let $G = \operatorname{GL}_n(\mathbb{F}_q)$ be the group of invertible $n \times n$ -matrices with entries in
 - $\mathbb{F}_q.$ (a) let n = 2, and consider the natural action of G on the set $\mathbb{F}_q^2 = \mathbb{F}_q \times \mathbb{F}_q$ defined by:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax+by \\ cx+dy \end{bmatrix}$$

 $\lfloor \bar{c} \ \bar{d} \rfloor \lfloor \bar{y} \rfloor = \lfloor \frac{ax+by}{cx+dy} \rfloor.$ Find the stabilizer of the point $(1,0) \in \mathbb{F}_q^2$. (b) Find the order of $\operatorname{GL}_2(\mathbb{F}_q)$. (c) Find the order of $\operatorname{GL}_n(\mathbb{F}_q)$.