Math 322, Fall Term 2011 Final Exam

Do not turn this page over until instructed

- On the top of each exam booklet write
 - 1. Your student ID;
 - 2. The serial number of this exam;
 - 3. The number of the booklet (if you use more than one).
- On the sign-in sheet write
 - 1. Your student ID;
 - 2. The serial number of this exam;
 - 3. Your name.

Instructions

- You will have 150 minutes for this exam.
- No books, notes or electronic devices.
- Solutions should be written clearly, in complete English sentences, showing all your work.
- If you use a result from the lectures or the problem sets, quote it properly.
- Good luck!

- 1. [8+6+6=20 pts]
- (a) Define the sign of an element in S_n and the alternating group A_n . Determine the sign of $\sigma = (1\,2\,3\,4\,5)$ in S_8 and the sign of a cycle of type (3,4,5) in S_{12} .
- (b) For n > 2, prove that the centre of S_n is trivial.
- (c) Write an element in S_4 of cycle type (2, 2) and determine the number of elements in its conjugacy class.
- 2. [7+8+5=20 pts]
- (a) Write down the class equation of a group and use it to show that a finite group of order p^n , p a prime, has non-trivial centre.
- (b) Show that any group of order 45 is abelian and any group of order 33 is cyclic.
- (c) Classify the possible abelian groups of order 792.
- 3. [8+8+6=22pts]
- (a) Prove that $f(x) = x^4 + 2x + 2$ is irreducible over \mathbb{Q} . Define a prime ideal and maximal ideal in a ring R and give an example of a non-zero prime ideal in $\mathbb{Z}[x]$.
- (b) Is 13 a prime in $\mathbb{Z}[i]$? Justify your answer. Show that any ideal in $\mathbb{Z}[i]$ contains a positive integer.
- (c) If $f: R \to S$ is a ring homomorphism between commutative rings show that $f^{-1}(P)$ is a prime ideal in R whenever P is a prime ideal in S.
- 4. [10+6+6=22pts]
- (a) Show that $f(x) = x^3 + 2x + 2$ is irreducible in $\mathbb{F}_3[x]$ (\mathbb{F}_3 is the finite field with three elements) and use this fact to construct a field with 27 elements that contains \mathbb{F}_3 .
- (b) Consider the polynomial $f(x) = (x^2 + 1)(x^2 2)$ over \mathbb{Q} . Find a field extension of \mathbb{Q} where f(x) splits completely into linear factors. What is the degree of such a field extension?
- (c) Let E/F be a field extension. What does it mean to say that E/F is algebraic? Give a necessary and sufficient condition for an element α in E to be algebraic over F. Give an example of a complex number which is not real and is algebraic over \mathbb{Q} .
- 5. State whether the following are true or false with full justification [8x2=16pts]
- (a) If τ is a cycle in S_n then τ^2 is also a cycle.

- (b) Let $R = \mathbb{Z}[i]$ be the ring of Euclidean integers. In the polynomial ring R[X] the prime elements are the same as irreducible elements.
- (c) If a group of order 25 acts on a set X, then there is an element $x \in X$ such that its orbit has 8 elements.
- (d) The number of conjugacy classes in S_n is equal to the number of nonisomorphic abelian groups of order p^n , for any prime p.
- (e) The group S_6 has a subgroup H of order 360 whose normaliser is S_6 .
- (f) The polynomial $x^6 + 30x^5 15x^3 + 6x 120$ is irreducible in $\mathbb{Z}[x]$.
- (g) In $\mathbb{Z}[x]$, every prime ideal is maximal.
- (h) If P is a p-Sylow subgroup and Q is a q-Sylow subgroup for two distinct primes p and q, and if $x \in P$, then no conjugate of x lies in Q.