Math 342, Spring Term 2009 Final Exam

April $16^{\text{th}},2009$

ID: _____

Name: _____

Signature:

Instructions

- Do not turn this page over until instructed.
- You will have 150 minutes for this exam.
- No books, notes or electronic devices.
- Solutions should be written clearly, in complete English sentences, showing all your work.
- If you use a result from the lectures or the problem sets, quote it properly.

1	/25
2	/25
3	/15
4	/15
5	/15
6	/5
Total	/100

1 The integers (25 points)

a. Find all integer solutions to the equation $12x \equiv 4(80)$ (10 pts). Hint: $7 \cdot 3 = 21$.

b. Find a zero-divisor in $\mathbb{Z}/10\mathbb{Z}$ (5 pts).

c. Let p be a prime number. What are the possible values for gcd(a, p) if $a \in \mathbb{Z}$? (5 pts)

d. For p prime use Bezout's Theorem to show that $\mathbb{Z}/p\mathbb{Z}$ is a field (5 pts).

2 Linear codes (25 points)

a. Define the *weight* of a vector $\underline{v} \in F^n$. Define the *weight* of a subspace $C \subset F^n$ (7 pts)

b. Let $C_3 \subset \mathbb{F}_2^8$ be the set of linear combinations of the three bit vectors $\underline{a} = (11000011), \underline{b} = (00110011), \underline{c} = (00001111)$. Show that the code C_3 has weight 4 (7 pts)

c. Let $G \in M_{7\times 3}(\mathbb{F}_2)$ be the matrix below, and let $C_{\mathbf{H}} = \left\{ G \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| x, y, z \in \mathbb{F}_2 \right\} \subset \mathbb{F}_2^7$ be the code for which G is the generating matrix. Show that $C_{\mathbf{H}}$

has weight 4 (7 pts). $G = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$

d. Both codes C_3 and C_H can be used to encode a data-stream by breaking the data into 3-bit blocks. Which code is better? Why? (4 pts)

3 Polynomials (15 points)

a. CRC-Encode the following 9-bit vectors using the polynomial $F_4(x) = x^4 + x + 1 \in \mathbb{F}_2[x]$ (8 pts).

- 1. (00000000)
- 2. (100100001)

b. Find the gcd of the two real polynomials $x^3 + x^2 + 3x - 5$ and $x^2 - 1$ (7 pts).

4 Maps of algebraic structures (15 points)

For a 3×3 matrix $A \in M_3(\mathbb{R})$ set $\operatorname{Tr}(A) = A_{11} + A_{22} + A_{33}$ (sum of the diagonal), which defines a map $\operatorname{Tr}: M_3(\mathbb{R}) \to \mathbb{R}$. We can give the domain and range different algebraic structures. For each of these structures you need to decide whether this map is a homomorphism of that kind of structure (prove your answers!)

a. First, is Tr a group homomorphism from group $(M_3(\mathbb{R}), 0_3, +)$ to the group $(\mathbb{R}, 0, +)$? (5 pts)

b. Next, think of $M_3(\mathbb{R})$ as an 9-dimensional real vector space in the usual way. Is $\operatorname{Tr}: M_3(\mathbb{R}) \to \mathbb{R}^1$ a linear map? (5 pts)

c. Finally, give both $M_3(\mathbb{R})$ and \mathbb{R} their usual ring structures. Is Tr: $M_3(\mathbb{R}) \to \mathbb{R}$ a homomorphism of rings? (5 pts)

5 RSA (15 points)

Consider the RSA cryptosystem with modulus m = 21 and encoding exponent e = 5.

a. Find the order $\varphi(m)$ of the group $(\mathbb{Z}/m\mathbb{Z})^{\times}$ (4 pts).

b. Find the decoding exponent d (4 pts).

c. Decode the messages $[4]_{21}$, $[5]_{21}$ (7 pts).

6 Last problem (5 points)

Show that the real function $\sqrt{x^4 + x^2}$ is not of the form $\frac{f(x)}{g(x)}$ where f, g are non-zero polynomials with real coefficients.