Math 342, Spring Term 2009 Final Exam

April $16^{\text {th }}, 2009$

ID: \qquad

Name: \qquad

Signature: \qquad

Instructions

- Do not turn this page over until instructed.
- You will have 150 minutes for this exam.
- No books, notes or electronic devices.
- Solutions should be written clearly, in complete English sentences, showing all your work.
- If you use a result from the lectures or the problem sets, quote it properly.

1	$/ 25$
2	$/ 25$
3	$/ 15$
4	$/ 15$
5	$/ 15$
6	$/ 5$
Total	$/ 100$

1 The integers (25 points)

a. Find all integer solutions to the equation $12 x \equiv 4(80)(10 \mathbf{p t s})$. Hint: $7 \cdot 3=21$.
b. Find a zero-divisor in $\mathbb{Z} / 10 \mathbb{Z}$ ($5 \mathbf{p t s}$).
c. Let p be a prime number. What are the possible values for $\operatorname{gcd}(a, p)$ if $a \in \mathbb{Z}$? ($5 \mathbf{p t s}$)
d. For p prime use Bezout's Theorem to show that $\mathbb{Z} / p \mathbb{Z}$ is a field (5 pts).

2 Linear codes (25 points)

a. Define the weight of a vector $\underline{v} \in F^{n}$. Define the weight of a subspace $C \subset F^{n}$ ($\mathbf{7} \mathbf{p t s}$)
b. Let $C_{3} \subset \mathbb{F}_{2}^{8}$ be the set of linear combinations of the three bit vectors $\underline{a}=(11000011), \underline{b}=(00110011), \underline{c}=(00001111)$. Show that the code C_{3} has weight 4 ($7 \mathbf{p t s}$)
c. Let $G \in M_{7 \times 3}\left(\mathbb{F}_{2}\right)$ be the matrix below, and let $C_{\mathbf{H}}=\left\{\left.G\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \right\rvert\, x, y, z \in \mathbb{F}_{2}\right\} \subset$ \mathbb{F}_{2}^{7} be the code for which G is the generating matrix. Show that $C_{\mathbf{H}}$ has weight 4 (7 pts).
$G=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.
d. Both codes C_{3} and $C_{\mathbf{H}}$ can be used to encode a data-stream by breaking the data into 3 -bit blocks. Which code is better? Why? (4 pts)

3 Polynomials (15 points)

a. CRC-Encode the following 9-bit vectors using the polynomial $F_{4}(x)=x^{4}+x+1 \in \mathbb{F}_{2}[x]$ (8 pts).

1. (000000000)
2. (100100001)
b. Find the gcd of the two real polynomials $x^{3}+x^{2}+3 x-5$ and $x^{2}-1$ (7 pts).

4 Maps of algebraic structures (15 points)

For a 3×3 matrix $A \in M_{3}(\mathbb{R})$ set $\operatorname{Tr}(A)=A_{11}+A_{22}+A_{33}$ (sum of the diagonal), which defines a map $\operatorname{Tr}: M_{3}(\mathbb{R}) \rightarrow \mathbb{R}$. We can give the domain and range different algebraic structures. For each of these structures you need to decide whether this map is a homomorphism of that kind of structure (prove your answers!)
a. First, is Tr a group homomorphism from group $\left(M_{3}(\mathbb{R}), 0_{3},+\right)$ to the $\operatorname{group}(\mathbb{R}, 0,+)$? ($5 \mathbf{p t s}$)
b. Next, think of $M_{3}(\mathbb{R})$ as an 9-dimensional real vector space in the usual way. Is $\operatorname{Tr}: M_{3}(\mathbb{R}) \rightarrow \mathbb{R}^{1}$ a linear map? (5 pts)
c. Finally, give both $M_{3}(\mathbb{R})$ and \mathbb{R} their usual ring structures. Is $\mathrm{Tr}: M_{3}(\mathbb{R}) \rightarrow \mathbb{R}$ a homomorphism of rings? (5 pts)

5 RSA (15 points)

Consider the RSA cryptosystem with modulus $m=21$ and encoding exponent $e=5$.
a. Find the order $\varphi(m)$ of the group $(\mathbb{Z} / m \mathbb{Z})^{\times}(4 \mathrm{pts})$.
b. Find the decoding exponent d (4 pts).
c. Decode the messages $[4]_{21},[5]_{21}$ ($\mathbf{7} \mathbf{~ p t s}$).

6 Last problem (5 points)

Show that the real function $\sqrt{x^{4}+x^{2}}$ is not of the form $\frac{f(x)}{g(x)}$ where f, g are non-zero polynomials with real coefficients.

