Math 342, Fall Term 2011 Final Exam

December 9th,2011

Student number:

LAST name:

<u>First name:</u>

Signature:

Instructions

- Do not turn this page over. You will have 150 minutes for the exam.
- You may not use books, notes or electronic devices of any kind.
- Solutions should be written clearly, in complete English sentences, showing all your work.
- If you are using a result from the textbook, the lectures or the problem sets, state it properly.

1	/15
2	/10
3	/25
4	/10
5	/15
6	/15
7	/10
Total	/100

1 (15 points)

a. Define "a is invertible in the commutative ring R" and exhibit a unit in $\mathbb{Z}/30\mathbb{Z}$. (10 points)

b. Use Euclid's algorithm to calculate gcd(120, 14). (5 points)

2 (10 points)

In this problem we consider the map $f: \mathbb{Z}/30\mathbb{Z} \to \mathbb{Z}/5\mathbb{Z}$ given by

$$f([n]_{30}) = [n+2]_5.$$

a. Assume that $[n]_{30} = [m]_{30}$. Show that $[n+2]_5 = [m+2]_5$. (5 points)

b. Is f a group homomorphism (for the addition operation)? Why or why not? (5 points)

3 A Linear Code (25 points)

In this problem we work over the field with 7 elements, denoted \mathbb{F}_7 or $\mathbb{Z}/7\mathbb{Z}$. Let $H \in M_{3\times 7}(\mathbb{F}_7)$ be the following matrix:

and let $C_H = \{ \underline{v} \in \mathbb{F}_7^7 \mid H\underline{v} = \underline{0} \}.$

a. Show that C_H is a subspace of \mathbb{F}_7^7 . (5 points)

b. Show that C_H has weight 3. (7 points)

c. Let $\underline{v}' \in \mathbb{F}_7^7$. Show that $\{\underline{x} \in \mathbb{F}_7^7 \mid H\underline{x} = H\underline{v}'\}$ is the coset $C_H + \underline{v}'$. (5 points)

e. For $\underline{v}' = (1, 2, 3, 6, 0, 1, 2) \mod 7$ evaluate $H\underline{v}'$ and find the coset leader of the coset from part c. (5 points)

f. Find the $\underline{v} \in C_H$ which is closest in Hamming distance to the \underline{v}' given in part e.; justify your answer. (3 points)

4 Reed-Solomon Codes (10 points)

Let $C_{RS} \subset \mathbb{F}_7^7$ be the Reed-Solomon code obtained by evaluating polynomials of degree at most 3 at *all* 7 points of \mathbb{F}_7 . Find the weight of C_{RS} . How does this code compare with C_H ?

5 Polynomials (15 points)

a. Calculate $gcd(x^3 + x + [1]_3, x^2 + [2]_3)$ in the ring of polynomials over $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$. (5 points)

b. Show that there are no $f,g \in \mathbb{F}_3[x]$ so that $\left(\frac{f}{g}\right)^2 = x^2 + [2]_3$. (10 points)

6 RSA (15 points)

Bob advertises a public RSA key with modulus m = 33 and encoding exponent e = 7. You will play the role of Eve, the eavesdropper.

a. Find the order $\varphi(m)$ of the group $(\mathbb{Z}/m\mathbb{Z})^{\times}$ (4 pts).

b. Find the decoding exponent d (4 pts).

c. Decode the messages $[2]_{33}$, $[7]_{33}$ sent by Alice (7 pts).

7 Order of elements (10 points)

Let (G, e, \cdot) be a group, and let $g \in G$.

a. Show that $\{n \in \mathbb{Z} \mid g^n = e\}$ is an ideal of \mathbb{Z} . (3 points)

b. Assume that $g^{37} = e$ but $g \neq e$. Show that $g^n = e$ if and only if 37|n. (2 points)

c. Let $m \ge 1$ and let $a, b \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ have orders r, s respectively. Let t be the order of ab. Show: (5 points)

$$rac{rs}{\left(r,s
ight)^2}\Big|t\qquad ext{and}\qquad t\Big|rac{rs}{\left(r,s
ight)}\,.$$