# Math 342, Fall Term 2011 <br> Final Exam 

December $9^{\text {th }}, 2011$

## Student number:

## LAST name:

## First name:

## Signature:

## Instructions

- Do not turn this page over. You will have 150 minutes for the exam.
- You may not use books, notes or electronic devices of any kind.
- Solutions should be written clearly, in complete English sentences, showing all your work.
- If you are using a result from the textbook, the lectures or the problem sets, state it properly.

| 1 | $/ 15$ |
| :---: | :---: |
| 2 | $/ 10$ |
| 3 | $/ 25$ |
| 4 | $/ 10$ |
| 5 | $/ 15$ |
| 6 | $/ 15$ |
| 7 | $/ 10$ |
| Total | $/ 100$ |

## 1 (15 points)

a. Define " $a$ is invertible in the commutative ring $R$ " and exhibit a unit in $\mathbb{Z} / 30 \mathbb{Z}$. (10 points)
b. Use Euclid's algorithm to calculate $\operatorname{gcd}(120,14)$. (5 points)

## 2 (10 points)

In this problem we consider the $\operatorname{map} f: \mathbb{Z} / 30 \mathbb{Z} \rightarrow \mathbb{Z} / 5 \mathbb{Z}$ given by

$$
f\left([n]_{30}\right)=[n+2]_{5} .
$$

a. Assume that $[n]_{30}=[m]_{30}$. Show that $[n+2]_{5}=[m+2]_{5}$. (5 points)
b. Is $f$ a group homomorphism (for the addition operation)? Why or why not? (5 points)

## 3 A Linear Code (25 points)

In this problem we work over the field with 7 elements, denoted $\mathbb{F}_{7}$ or $\mathbb{Z} / 7 \mathbb{Z}$.
Let $H \in M_{3 \times 7}\left(\mathbb{F}_{7}\right)$ be the following matrix:

$$
H=\left(\begin{array}{ccccccc}
1 & 1 & 0 & 1 & -1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & -1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & -1
\end{array}\right)
$$

and let $C_{H}=\left\{\underline{v} \in \mathbb{F}_{7}^{7} \mid H \underline{v}=\underline{0}\right\}$.
a. Show that $C_{H}$ is a subspace of $\mathbb{F}_{7}^{7}$. (5 points)
b. Show that $C_{H}$ has weight 3. ( 7 points)
c. Let $\underline{v}^{\prime} \in \mathbb{F}_{7}^{7}$. Show that $\left\{\underline{x} \in \mathbb{F}_{7}^{7} \mid H \underline{x}=H \underline{v}^{\prime}\right\}$ is the coset $C_{H}+\underline{v}^{\prime}$. (5 points)
e. For $\underline{v}^{\prime}=(1,2,3,6,0,1,2) \bmod 7$ evaluate $H \underline{v}^{\prime}$ and find the coset leader of the coset from part c. (5 points)
f. Find the $\underline{v} \in C_{H}$ which is closest in Hamming distance to the $\underline{v}^{\prime}$ given in part e.; justify your answer. (3 points)

## 4 Reed-Solomon Codes (10 points)

Let $C_{\mathrm{RS}} \subset \mathbb{F}_{7}^{7}$ be the Reed-Solomon code obtained by evaluating polynomials of degree at most 3 at all 7 points of $\mathbb{F}_{7}$. Find the weight of $C_{R S}$. How does this code compare with $C_{H}$ ?

## 5 Polynomials (15 points)

a. Calculate $\operatorname{gcd}\left(x^{3}+x+[1]_{3}, x^{2}+[2]_{3}\right)$ in the ring of polynomials over $\mathbb{F}_{3}=\mathbb{Z} / 3 \mathbb{Z}$. (5 points)
b. Show that there are no $f, g \in \mathbb{F}_{3}[x]$ so that $\left(\frac{f}{g}\right)^{2}=x^{2}+[2]_{3} .(\mathbf{1 0}$ points)

## 6 RSA (15 points)

Bob advertises a public RSA key with modulus $m=33$ and encoding exponent $e=7$. You will play the role of Eve, the eavesdropper.
a. Find the order $\varphi(m)$ of the group $(\mathbb{Z} / m \mathbb{Z})^{\times}(4 \mathrm{pts})$.
b. Find the decoding exponent $d$ (4 pts).
c. Decode the messages $[2]_{33},[7]_{33}$ sent by Alice ( $7 \mathbf{p t s}$ ).

## 7 Order of elements (10 points)

Let $(G, e, \cdot)$ be a group, and let $g \in G$.
a. Show that $\left\{n \in \mathbb{Z} \mid g^{n}=e\right\}$ is an ideal of $\mathbb{Z}$. (3 points)
b. Assume that $g^{37}=e$ but $g \neq e$. Show that $g^{n}=e$ if and only if $37 \mid n$. (2 points)
c. Let $m \geq 1$ and let $a, b \in(\mathbb{Z} / m \mathbb{Z})^{\times}$have orders $r, s$ respectively. Let $t$ be the order of $a b$. Show: (5 points)

$$
\left.\frac{r s}{(r, s)^{2}} \right\rvert\, t \quad \text { and } \quad t \left\lvert\, \frac{r s}{(r, s)}\right.
$$

