Department of Mathematics

University of British Columbia MATH 342 Final Exam
April 28, 2014 8:30 AM - 11:00 AM

Family Name: \qquad Initials: \qquad
I.D. Number: \qquad Signature: \qquad

Problem	Mark	Out of
1		10
2		10
3		10
4		10
5		10
6		10
7		80
8		
Total		

CALCULATORS, NOTES OR BOOKS ARE NOT PERMITTED.
THERE ARE 8 PROBLEMS ON THIS EXAM.
JUSTIFY YOUR ANSWERS.

Find the following principal remainders, (the principal remainder of $a \bmod q$ is the unique element $b \in\{0,1, \ldots, q-1\}$ s.t. $a=b \bmod q$).
(a) $10^{3849197491} \bmod 11$
(b) $(60)^{11} \bmod 11$
(c) $(1100005)(223347) \bmod 11$
2.

Let C be the linear code over F_{5} spanned by $\{01234,13024,12340\}$.
(a) Find bases for C and C^{\perp}.
(b) Find the length, dimension, and minimum distance of C and C^{\perp}.
(c) Find the number of cosets of C and C^{\perp}.
(d) For each coset of C^{\perp} with coset leader of weight at least 2, find a coset leader.

Let A be an $m \times n$ matrix with entries 0 and 1 . We say that A is even if the number of 1 's in each row is even and the number of 1 's in each column is even.
Let A and B be distinct even $m \times n$ matrices. Show that A and B must differ in at least four entries.

Note: the integer 0 is even.

Which of the following polynomials is (are) irreducible over F_{2} ?
(a) $f(x)=x^{5}+x^{2}+1$
(b) $g(x)=x^{5}+x+1$

Recall the definition of characteristic of a finite field F : the smallest positive integer q such that $q \cdot 1=0$ (recall that for an element $a \in F$, $q \cdot a$ denotes the sum of q copies of a).
(a) Show that if F is a finite field with characteristic q, then for all nonzero elements $a \in F, q$ is the smallest positive integer such that $q \cdot a=0$
(b) For any prime p and positive integer n, what is the characteristic of $F_{p^{n}}$?
6.

Let a be a primitive element of F_{27}.
(a) Find all positive integers n such that $a^{n}=a^{3}$.
(b) Find all powers of a that are primitive.
7.

In this problem, note the "round brackets" (n, M, d) (not square brackets $[n, k, d]$).
(a) i. Find a $(3,4,2)$ binary code.
ii. Find a $(5,4,3)$ binary code.
iii. Use parts i and ii to find a $(8,4,5)$ binary code.
(b) Show that $A_{2}(8,5)=4$.

Let C be a binary code of length n with at least two codewords. Let t be a positive integer such that the Hamming balls of radius t, centered at the codewords, are pairwise disjoint and completely cover F_{2}^{n}. Show that $d(C)=2 t+1$.

