Department of Mathematics University of British Columbia MATH 342 Final Exam April 28, 2014 8:30 AM - 11:00 AM

Family Name: _____

Initials: _____

I.D. Number: _____ Signature: _____

Problem	Mark	Out of
1		10
2		10
3		10
4		10
5		10
6		10
7		10
8		10
Total		80

CALCULATORS, NOTES OR BOOKS ARE NOT PERMITTED. THERE ARE 8 PROBLEMS ON THIS EXAM. JUSTIFY YOUR ANSWERS.

Find the following principal remainders, (the principal remainder of $a \mod q$ is the unique element $b \in \{0, 1, \ldots, q-1\}$ s.t. $a = b \mod q$).

- (a) $10^{3849197491} \mod 11$
- (b) $(60)^{11} \mod 11$
- (c) $(1100005)(223347) \mod 11$

Let C be the linear code over F_5 spanned by $\{01234, 13024, 12340\}$.

- (a) Find bases for C and C^{\perp} .
- (b) Find the length, dimension, and minimum distance of C and C^{\perp} .
- (c) Find the number of cosets of C and C^{\perp} .
- (d) For each coset of C^{\perp} with coset leader of weight at least 2, find a coset leader.

Let A be an $m \times n$ matrix with entries 0 and 1. We say that A is *even* if the number of 1's in each row is even and the number of 1's in each column is even.

Let A and B be distinct even $m \times n$ matrices. Show that A and B must differ in at least four entries.

Note: the integer 0 is even.

Which of the following polynomials is (are) irreducible over F_2 ?

(a) $f(x) = x^5 + x^2 + 1$ (b) $g(x) = x^5 + x + 1$

Recall the definition of characteristic of a finite field F: the smallest positive integer q such that $q \cdot 1 = 0$ (recall that for an element $a \in F$, $q \cdot a$ denotes the sum of q copies of a).

- (a) Show that if F is a finite field with characteristic q, then for all nonzero elements $a \in F$, q is the smallest positive integer such that $q \cdot a = 0$
- (b) For any prime p and positive integer n, what is the characteristic of F_{p^n} ?

Let a be a primitive element of F_{27} .

- (a) Find all positive integers n such that $a^n = a^3$.
- (b) Find all powers of a that are primitive.

In this problem, note the "round brackets" (n, M, d) (not square brackets [n, k, d]).

- (a) i. Find a (3,4,2) binary code.
 - ii. Find a (5,4,3) binary code.
 - iii. Use parts i and ii to find a (8,4,5) binary code.
- (b) Show that $A_2(8,5) = 4$.

Let C be a binary code of length n with at least two codewords. Let t be a positive integer such that the Hamming balls of radius t, centered at the codewords, are pairwise disjoint and completely cover F_2^n . Show that d(C) = 2t + 1.