Be sure that this examination has 3 pages.

The University of British Columbia

Final Examinations - December 2013

Mathematics 400

Michael Ward

Closed book examination
Time: $2 \frac{1}{2}$ hours

Special Instructions: Closed Book and Notes. Calculators are not allowed.

Marks

[20] 1. Consider the following first order PDE for $u=u(x, y)$:

$$
u_{x}+3 x^{2} u_{y}=(y+1) u
$$

(i) Find the solution to this PDE if we give the data

$$
u=f(y), \quad \text { on } x=0 \text { for }-1 \leq y \leq 1
$$

In which region of the (x, y) plane is this solution defined?
(ii) Find a condition on $f(y)$ such that this PDE has a solution which satisfies

$$
u=f(y), \quad \text { on } y=x^{3} \text { for } 0 \leq x \leq 1
$$

[20] 2. Let $c(u)$ be a smooth function satisfying both $c^{\prime}(u)<0$ and $c(u)<0$ for all $u>0$. Assume also $c(0)=0$. Consider the nonlinear wave equation for $u(x, t)$ given by

$$
u_{t}+c(u) u_{x}=0, \quad-\infty<x<\infty, \quad t \geq 0 ; \quad u(x, 0)=e^{-x^{2}}
$$

(i) Sketch a few pictures of u versus x at fixed times to illustrate how u evolves as t increases.
(ii) By using the method of characteristics, derive a formula for the breaking time t_{b}, defined as the minimum time in $t>0$ at which the solution $u(x, t)$ becomes multi-valued in x
(iii) Calculate the breaking time t_{b} explicitly for the special case where $c(u)=-u^{4}$.
[20] 3. Consider Laplace's equation for $u=u(r, \theta)$ in the wedge $0 \leq r \leq R, 0 \leq \theta \leq \alpha$, where (r, θ) are polar coordinates:

$$
\begin{aligned}
& u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, \quad 0 \leq r \leq R, \quad 0 \leq \theta \leq \alpha \\
& u(r, 0)=0, \quad u(r, \alpha)=0, \quad u(R, \theta)=1, \quad u \text { bounded as } r \rightarrow 0 .
\end{aligned}
$$

Here $R>0$ and $0<\alpha<2 \pi$.
(i) By summing an appropriate eigenfunction expansion, find a compact form for the solution to this PDE.
(ii) From the solution in (i), show that the leading order behavior for u as $r \rightarrow 0$ is $u \approx A r^{\beta} \sin (\beta \theta)$ for some constants A and β. Calculate the constants A and β explicitly. For what values of the wedge-angle α is the partial derivative u_{r} bounded as $r \rightarrow 0$? (Remark: you can still find β even if you are unable to solve part (i)).
[20] 4. Consider a sphere of radius a with azimuthal symmetry and with surface potential $u(a, \theta)=f(\theta)$. Then, the solution $u(r, \theta)$ to the axisymmetric Laplace's equation, defined both inside and outside the sphere, satisfies

$$
\begin{gathered}
\frac{1}{r^{2}}\left(r^{2} u_{r}\right)_{r}+\frac{1}{r^{2} \sin \theta}\left(\sin \theta u_{\theta}\right)_{\theta}=0, \quad 0<r<\infty, \quad 0<\theta<\pi \\
u(a, \theta)=f(\theta), \quad 0<\theta<\pi
\end{gathered}
$$

u bounded as $r \rightarrow 0$ and $r \rightarrow \infty ; \quad u$ bounded as $\theta \rightarrow 0$ and $\theta \rightarrow \pi$.
(i) Imposing that u is continuous across $r=a$ calculate $u(r, \theta)$ for $r>a$ and then for $0<r<a$.
(ii) In terms of $f(\theta)$, give a formula for the surface charge density $\sigma(\theta)$ defined by

$$
\sigma(\theta)=\left.\frac{\partial u}{\partial r}\right|_{r=a^{+}}-\left.\frac{\partial u}{\partial r}\right|_{r=a^{-}} .
$$

(iii) Calculate $\sigma(\theta)$ explicitly when $f(\theta)=\cos (3 \theta)$. (Hint: you need the identity $\cos ^{3} \theta=\frac{3}{4} \cos \theta+\frac{1}{4} \cos (3 \theta)$. The first few Legendre polynomials are given on the next page).
[20] 5. Consider axially symmetric diffusion for $u(r, z, t)$ in a finite cylinder with insulating boundary conditions, but with bulk decay, modeled by

$$
\begin{gathered}
u_{t}=u_{r r}+\frac{1}{r} u_{r}+u_{z z}-\kappa u, \quad 0 \leq r \leq a, \quad 0 \leq z \leq H, \quad t \geq 0 \\
u_{z}=0 \quad \text { on } z=0, H, \quad u_{r}=0 \quad \text { on } r=a, \quad u \text { bounded as } r \rightarrow 0 \\
u(r, z, 0)=f(r, z)
\end{gathered}
$$

The coefficient of bulk decay, κ, is assumed to be a positive constant.
(i) Determine an eigenfunction expansion representation for the time-dependent solution $u(r, z, t)$.
(ii) From your eigenfunction expansion, find an approximation to the solution that shows how $u \rightarrow 0$ as $t \rightarrow \infty$.
(iii) Define the mass $M(t)$ by $M(t) \equiv \int_{0}^{H} \int_{0}^{a} u(r, z, t) r d r d z$. Calculate $M(t)$ for all $t>0$ in terms of $f(r, z)$ and $\kappa>0$ (Remark: you do not have to solve (i) to answer this question).

Legendre Polynomial Information: The first few Legendre polynomials $P_{n}(x)$ are as follows:

$$
P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), \quad P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) .
$$

[100] Total Marks

