Be sure that this examination has 3 pages.

The University of British Columbia

Final Examinations - December 2015
Mathematics 400

M. Ward

Closed book examination
Time: $2 \frac{1}{2}$ hours

Special Instructions: Closed Book and Notes. Calculators are not allowed.

Marks

[15] 1. Consider the following first order PDE for $u=u(x, y)$:

$$
u_{x}+2 x u_{y}=(3 y+x) u
$$

(i) Find the general solution to this PDE.
(ii) Find the specific solution to this PDE that satisfies the data

$$
u=f(y), \quad \text { on } x=0 \text { for }-1 \leq y \leq 1
$$

In which region of the (x, y) plane is this solution defined?
[20] 2. Consider axially symmetric diffusion for $u(r, z, t)$ in a finite cylinder of radius $a>0$ and height $H>0$ with insulating boundary conditions modeled by

$$
\begin{gathered}
u_{t}=u_{r r}+\frac{1}{r} u_{r}+u_{z z}, \quad 0 \leq r \leq a, \quad 0 \leq z \leq H, \quad t \geq 0 \\
u_{z}=0 \quad \text { on } z=0 \text { and } z=H ; \quad u_{r}=0 \quad \text { on } r=a, \quad u \text { bounded as } r \rightarrow 0 \\
u(r, z, 0)=f(r, z)
\end{gathered}
$$

Determine an eigenfunction expansion representation for the time-dependent solution $u(r, z, t)$, and also calculate the steady-state solution.
[20] 3. Assume that $\beta>0$ and $\alpha \geq 0$ are constants, and consider the following traffic flow model for the density $\rho(x, t)$ of cars given by

$$
\begin{aligned}
\rho_{t}+(2-\rho) \rho_{x}+\alpha \rho & =0, \quad-\infty<x<\infty, \quad t>0 \\
\rho(x, 0) & =\frac{3 \beta^{2}}{\beta^{2}+x^{2}} .
\end{aligned}
$$

(i) First let $\alpha=\mathbf{0}$. Determine a parametric form for the solution $\rho(x, t)$. Plot qualitatively the characteristics in the (x, t) plane, and sketch the solution $\rho(x, t)$ versus x at different times. Determine the time t_{b} as a function of β when the solution first becomes multi-valued.
(ii) Now let $\alpha>\mathbf{0}$. Find a value α_{c}, which depends on β, such that the solution does not become multi-valued for any $t>0$ if and only if $\alpha>\alpha_{c}$.
(iii) Let $\alpha \geq \mathbf{0}$. Calculate explicitly the total number $N(t)$ of cars on the road, defined by $N(t)=\int_{-\infty}^{\infty} \rho(x, t) d x$.
[20] 4. Consider the diffusion problem for $u(r, \theta, t)$ in a disk of radius a with an inflow/outflow flux boundary condition modeled by

$$
\begin{gathered}
u_{t}=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}, \quad 0 \leq r \leq a, \quad 0 \leq \theta \leq 2 \pi, \quad t \geq 0 \\
u_{r}(a, \theta, t)=f(\theta), \quad u \text { bounded as } r \rightarrow 0, \quad u \text { and } u_{\theta} \text { are } 2 \pi \text { periodic in } \theta, \\
u(r, \theta, 0)=g(r, \theta)
\end{gathered}
$$

(i) Write the problem that the steady-state solution $U(r, \theta)$ would satisfy. Prove that such a steady-state solution $U(r, \theta)$ does not exist when $\int_{0}^{2 \pi} f(\theta) d \theta \neq 0$.
(ii) Assume that $\int_{0}^{2 \pi} f(\theta) d \theta=0$. Calculate an integral representation for the steady state solution $U(r, \theta)$ by summing an appropriate eigenfunction expansion.
(ii) Assume that $\int_{0}^{2 \pi} f(\theta) d \theta \neq 0$. Determine an approximation to the time-dependent solution $u(r, \theta, t)$ that is valid for large time t.
[25] 5. Each of these five short-answer questions below is worth 5 points. Very little calculation is needed for any of these problems.
(i) In the circular disk $0<r<a, 0 \leq \theta \leq 2 \pi$ find the explicit solution to Laplace's equation for $u(r, \theta)$:

$$
\begin{gathered}
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, \quad 0 \leq r \leq a, \quad 0 \leq \theta \leq 2 \pi \\
u(a, \theta)=2 \cos ^{2}(\theta)+1, \quad u \text { bounded as } r \rightarrow 0, \quad u \text { and } u_{\theta} 2 \pi \text { periodic in } \theta .
\end{gathered}
$$

(Hint: Recall that $\cos ^{2}(\theta)=[1+\cos (2 \theta)] / 2$.)
(ii) Outside the sphere $r>a$, where θ is the polar angle with $0 \leq \theta \leq \pi$, find the explicit solution to Laplace's equation $\Delta u=0$ with $u=2 \cos ^{2}(\theta)+1$ on $r=a$, $u \rightarrow 0$ as $r \rightarrow \infty$, and u is bounded at the poles $\theta=0, \pi$. (Recall that the first three Legendre polynomials are $P_{0}(x)=1, P_{1}(x)=x$, and $P_{2}(x)=\left(3 x^{2}-1\right) / 2$.)
(iii) Consider the radially symmetric diffusion problem for $u(r, t)$ in the unit sphere $0<r<1$, modeled by

$$
\begin{array}{r}
u_{t}=D\left(u_{r r}+\frac{2}{r} u_{r}\right), \quad 0 \leq r \leq 1, \quad t>0 \\
u(1, t)=0, \quad u \text { bounded as } r \rightarrow 0 ; \quad u(r, 0)=f(r),
\end{array}
$$

where $D>0$ is constant. Show that for long time, i.e. for $t \rightarrow+\infty$, that the solution can be approximated by $u(r, t) \approx A e^{-D \pi^{2} t} \sin (\pi r) / r$ for some $A>0$ to be found.
(iv) Consider the damped wave-equation on a finite interval $0<x<L$, and with time-periodic forcing modeled by

$$
\begin{array}{r}
u_{t t}+a u_{t}=c^{2} u_{x x}+\sin (\omega t), \quad 0<x<L, \quad t>0 \\
u(0, t)=0, \quad u(L, t)=0 ; \quad u(x, 0)=0, \quad u_{t}(x, 0)=0
\end{array}
$$

Here $c>0$, while $a>0$ is small. For what frequencies $\omega>0$ will we obtain a very large response for u when $a>0$ is small? (Hint: these are the frequencies where resonance would occur if $a=0$).
(v) Solve the signalling problem for the wave equation $u(x, t)$ where the signal is applied on a space-time curve as follows:

$$
\begin{aligned}
u_{t t}=c^{2} u_{x x}, & c_{0} t<x<\infty, \quad t>0 \\
u\left(c_{0} t, t\right)=\sin (\omega t), & u(x, 0)=u_{t}(x, 0)=0
\end{aligned}
$$

Here $0<c_{0}<c$.

