PUTNAM PRACTICE SET 1

PROF. DRAGOS GHIOCA

Problem 1. Find the maximum and the minimum possible value of the product $x_{1} \cdot x_{2} \cdots x_{n}$, where the real numbers x_{i} satisfy the following properties:

- $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1$; and
- $x_{i} \geq \frac{1}{n}$ for each $i=1, \ldots, n$.

Problem 2. We let $f:[0,1) \longrightarrow[0,1)$ be defined by the properties:

$$
\left\{\begin{array}{clc}
f(x)=\frac{f(2 x)}{4} & \text { if } & 0 \leq x<\frac{1}{2} \\
f(x)=\frac{3+f(2 x-1)}{4} & \text { if } & \frac{1}{2} \leq x<1
\end{array} .\right.
$$

Find $f(x)$ for each $x \in[0,1)$; you may express your answer in terms of the expansion of x in base 2 .

Problem 3. Find all real numbers a for which there exist nonnegative real numbers x_{1}, \ldots, x_{5} satisfying the following property:

$$
\sum_{k=1}^{5} k^{2 i-1} \cdot x_{k}=a^{i} \text { for each } i=1,2,3 .
$$

Problem 4. Let $m \in \mathbb{N}$ and let $a_{1}, \ldots, a_{m} \in \mathbb{N}$. Prove that there exists a positive integer $n<2^{m}$ and there exist positive integers b_{1}, \ldots, b_{n} satisfying the following properties:
(i) for any two distinct subsets $I, J \subseteq\{1, \ldots, n\}$, we have that $\sum_{k \in I} b_{k} \neq$ $\sum_{\ell \in J} b_{\ell}$; and
(ii) for each $i=1, \ldots, m$, there exists a subset $J_{i} \subseteq\{1, \ldots, n\}$ such that $a_{i}=$ $\sum_{k \in J_{i}} b_{k}$.

