PUTNAM PRACTICE SET 10

PROF. DRAGOS GHIOCA

Problem 1. Prove that for each positive integer n, we have

$$
\left(\frac{2 n-1}{e}\right)^{\frac{2 n-1}{2}}<\prod_{i=1}^{n}(2 i-1)<\left(\frac{2 n+1}{e}\right)^{\frac{2 n+1}{2}}
$$

where e is base of the natural logarithm.
Problem 2. For any square matrix A with real entries, we can define

$$
\sin (A):=\sum_{n=0}^{\infty} \frac{(-1)^{n} A^{2 n+1}}{(2 n+1)!}
$$

i.e., the above series converges. Determine with proof whether there exists some matrix A with real entries such that

$$
\sin (A)=\left(\begin{array}{cc}
1 & 2019 \\
0 & 1
\end{array}\right)
$$

Problem 3. Let $P \in \mathbb{R}[x]$ with the property that $P(x) \geq 0$ for all $x \in \mathbb{R}$. Prove that there exist polynomials $Q_{1}, Q_{2} \in \mathbb{R}[x]$ such that $P(x)=Q_{1}(x)^{2}+Q_{2}(x)^{2}$.

Problem 4. Let a_{n} be real numbers so that the following power series expansion holds:

$$
\frac{1}{1-2 x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Prove that for each integer $n \geq 0$, there exists a positive integer m such that $a_{n+1}^{2}+a_{n}^{2}=a_{m}$.

