PUTNAM PRACTICE SET 11

PROF. DRAGOS GHIOCA

Problem 1. Find the sum of the series

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^{2} n}{3^{m}\left(3^{m} n+3^{n} m\right)}
$$

Problem 2. Prove that there exists a positive constant C such that for any polynomial $P \in \mathbb{R}[x]$ of degree less than 2020, we have that

$$
P(0) \leq C \cdot \int_{-1}^{1}|P(x)| \mathrm{dx}
$$

Problem 3. The sequence $\left\{a_{n}\right\}$ satisfies

$$
\begin{gathered}
a_{1}=1 ; a_{2}=2 ; a_{3}=24 \text { and for } n \geq 4: \\
a_{n}=\frac{6 a_{n-1}^{2} a_{n-3}-8 a_{n-1} a_{n-2}^{2}}{a_{n-2} a_{n-3}} .
\end{gathered}
$$

Prove that for each positive integer n, we have that a_{n} is an integer multiple of n.
Problem 4. Let $P \in \mathbb{C}[x]$ be a polynomial of degree n such that $P(x)=Q(x)$. $P^{\prime \prime}(x)$, where $Q(x)$ is a quadratic polynomial and $P^{\prime \prime}$ is the double derivative of P. Show that if $P(x)$ has at least two distinct roots, then it must have n distinct roots.

