PUTNAM PRACTICE SET 2

PROF. DRAGOS GHIOCA

Problem 1. Consider the two sequences $\{a_m\}_{m\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ defined by $a_1 = 3$ and for each $m \ge 1$, we have $a_{m+1} = 3^{a_m}$

and

 $b_1 = 100$ and for each $n \ge 1$, we have $b_{n+1} = 100^{b_n}$. Find the smallest possible integer n such that $b_n > a_{2019}$.

Problem 2. Let n > 1 be an integer and let a > 0 be a real number. Let x_1, \ldots, x_n be nonnegative real numbers satisfying: $\sum_{i=1}^n x_i = a$. Find the maximum of $\sum_{i=1}^{n-1} x_i x_{i+1}$.

Problem 3. Let N be the number of integer solutions to the equation $x^3 - y^3 = z^5 - t^5$ with the property that $0 \le x, y, z, t \le 2019^{2019}$. Let M be the number of integer solutions to the equation $x^3 - y^3 = z^5 - t^5 + 1$ with the property that $0 \le x, y, z, t \le 2019^{2019}$. Prove that N > M.

Problem 4. Find all $n \in \mathbb{N}$ such that $2^8 + 2^{11} + 2^n$ is a perfect square.