PUTNAM PRACTICE SET 2

PROF. DRAGOS GHIOCA

Problem 1. Consider the two sequences $\left\{a_{m}\right\}_{m \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ defined by $a_{1}=3$ and for each $m \geq 1$, we have $a_{m+1}=3^{a_{m}}$
and

$$
b_{1}=100 \text { and for each } n \geq 1, \text { we have } b_{n+1}=100^{b_{n}} .
$$

Find the smallest possible integer n such that $b_{n}>a_{2019}$.
Problem 2. Let $n>1$ be an integer and let $a>0$ be a real number. Let x_{1}, \ldots, x_{n} be nonnegative real numbers satisfying: $\sum_{i=1}^{n} x_{i}=a$. Find the maximum of $\sum_{i=1}^{n-1} x_{i} x_{i+1}$.

Problem 3. Let N be the number of integer solutions to the equation $x^{3}-y^{3}=$ $z^{5}-t^{5}$ with the property that $0 \leq x, y, z, t \leq 2019^{2019}$. Let M be the number of integer solutions to the equation $x^{3}-y^{3}=z^{5}-t^{5}+1$ with the property that $0 \leq x, y, z, t \leq 2019^{2019}$. Prove that $N>M$.

Problem 4. Find all $n \in \mathbb{N}$ such that $2^{8}+2^{11}+2^{n}$ is a perfect square.

