PUTNAM PRACTICE SET 3

PROF. DRAGOS GHIOCA

Problem 1. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function satisfying the relation:

$$
f(x+y+x y)=f(x)+f(y)+f(x y) \text { for each } x, y, \in \mathbb{R} .
$$

Prove that $f(x+y)=f(x)+f(y)$ for each $x, y \in \mathbb{R}$.
Problem 2. Find all positive real numbers a with the property that the equation $\log _{a}(x)-x=0$ has exactly one real solution.

Problem 3.
(a) Find all integers $n>2$ for which there exists an integer $m \geq n$ such that m divides the least common multiple of $m-1, m-2, \cdots, m-n+1$.
(b) Find all positive integers $n>2$ for which there exists exactly one integer $m \geq n$ such that m divides the least common multiple of $m-1, m-$ $2, \cdots, m-n+1$.

Problem 4. Find the minimum of

$$
\max \{a+b+c, b+c+d, c+d+e, d+e+f, e+f+g\}
$$

where the real numbers a, b, c, d, e, f, g vary among all the possible nonnegative solutions to the equation $a+b+c+d+e+f+g=1$.

