PUTNAM PRACTICE SET 4

PROF. DRAGOS GHIOCA

Problem 1. Let $\left\{F_{n}\right\}_{n \geq 1}$ be the Fibonacci sequence, i.e.,

$$
F_{1}=1, F_{2}=1 \text { and } F_{n+2}=F_{n+1}+F_{n} \text { for each } n \geq 1
$$

Find all positive real numbers a and b with the property that for each $n \geq 1$, we have that $a F_{n}+b F_{n+1}$ is another element of the Fibonacci sequence.

Problem 2. For any polynomial $P \in \mathbb{C}[x]$ and for each complex number a, we denote by P_{a} the set of all $z_{0} \in \mathbb{C}$ such that $P\left(z_{0}\right)=a$. Let $P, Q \in \mathbb{C}[x]$ such that $P_{2}=Q_{2}$ and $P_{5}=Q_{5}$. Prove that $P=Q$.

Problem 3. Let $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. We have a function $f: \mathbb{N}_{0}^{2} \longrightarrow \mathbb{N}_{0}$ satisfying the following properties:

- $f(0, y)=y+1$ for each $y \in \mathbb{N}_{0}$;
- $f(x+1,0)=f(x, 1)$ for each $x \in \mathbb{N}_{0}$; and
- $f(x+1, y+1)=f(x, f(x+1, y))$ for each $x, y \in \mathbb{N}_{0}$.

Find $f(4,2019)$.
Problem 4. We consider all possible sequences $\left\{x_{n}\right\}_{n \geq 0}$ of positive real numbers having the properties that $x_{0}=1$ and also that $x_{n+1} \leq x_{n}$ for each $n \geq 0$.
(I) Prove that for each such sequence $\left\{x_{n}\right\}_{n \geq 0}$, we have that the series

$$
\sum_{i=0}^{\infty} \frac{x_{i}^{2}}{x_{i+1}}
$$

is either divergent to $+\infty$, or it converges to a real number at least equal to 4.
(II) Prove that there exists exactly one such sequence $\left\{x_{n}\right\}_{n \geq 0}$ for which the series

$$
\sum_{i=0}^{\infty} \frac{x_{i}^{2}}{x_{i+1}}
$$

equals 4.

