PUTNAM PRACTICE SET 4

PROF. DRAGOS GHIOCA

Problem 1. Let $\{F_n\}_{n\geq 1}$ be the Fibonacci sequence, i.e.,

$$F_1 = 1, F_2 = 1$$
 and $F_{n+2} = F_{n+1} + F_n$ for each $n \ge 1$.

Find all positive real numbers a and b with the property that for each $n \ge 1$, we have that $aF_n + bF_{n+1}$ is another element of the Fibonacci sequence.

Problem 2. For any polynomial $P \in \mathbb{C}[x]$ and for each complex number a, we denote by P_a the set of all $z_0 \in \mathbb{C}$ such that $P(z_0) = a$. Let $P, Q \in \mathbb{C}[x]$ such that $P_2 = Q_2$ and $P_5 = Q_5$. Prove that P = Q.

Problem 3. Let $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. We have a function $f : \mathbb{N}_0^2 \longrightarrow \mathbb{N}_0$ satisfying the following properties:

- f(0,y) = y + 1 for each $y \in \mathbb{N}_0$;
- f(x+1,0) = f(x,1) for each $x \in \mathbb{N}_0$; and
- f(x+1, y+1) = f(x, f(x+1, y)) for each $x, y \in \mathbb{N}_0$.

Find f(4, 2019).

Problem 4. We consider all possible sequences $\{x_n\}_{n\geq 0}$ of positive real numbers having the properties that $x_0 = 1$ and also that $x_{n+1} \leq x_n$ for each $n \geq 0$.

(I) Prove that for each such sequence $\{x_n\}_{n\geq 0}$, we have that the series

$$\sum_{i=0}^{\infty} \frac{x_i^2}{x_{i+1}}$$

is either divergent to $+\infty$, or it converges to a real number at least equal to 4.

(II) Prove that there exists exactly one such sequence $\{x_n\}_{n\geq 0}$ for which the series

$$\sum_{i=0}^{\infty} \frac{x_i^2}{x_{i+1}}$$

equals 4.