## PUTNAM PRACTICE SET 5

PROF. DRAGOS GHIOCA

Problem 1. Let $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. We consider a function $f: \mathbb{N} \longrightarrow \mathbb{N}_{0}$ satisfying the following properties:
(a) for any $m, n \in \mathbb{N}$, we have that $f(m+n)-f(m)-f(n) \in\{0,1\}$
(b) $f(2)=0$;
(c) $f(3)>0$; and
(d) $f(9999)=3333$.

Compute $f(2019)$.
Problem 2. Find all real numbers $a$ for which the equation

$$
16 x^{4}-a x^{3}+(2 a+17) x^{2}-a x+16=0
$$

has 4 distinct real roots which form a geometric progression.
Problem 3. Let $P(x)$ be a monic polynomial of degree 3 with integer coefficients. If one of its roots equals the product of the other two roots, then prove that there exists an integer $m$ such that

$$
2 P(-1)=m \cdot(P(1)+P(-1)-2-2 P(0)) .
$$

Problem 4. Let $m, n \in \mathbb{N}$. In a box there are $m$ white balls and $n$ black balls. We extract randomly two balls from the box; if the two balls have different colors, then we put back in the box a white ball, while if the two balls have the same color, then we put back in the box a black ball. We repeat this procedure until there is left in the box only one single ball. What is the probability that this last ball is white?

