PUTNAM PRACTICE SET 7

PROF. DRAGOS GHIOCA

Problem 1. Let $P \in \mathbb{C}[x]$ be a polynomial of degree $n \geq 1$ with the property that $P(k)=\frac{1}{\binom{n+1}{k}}$ for each $k=0,1, \ldots, n$. Find $P(n+1)$.

Problem 2. Find the maximum value for $m^{2}+n^{2}$ where $1 \leq m, n \leq 2019$ and moreover $\left(n^{2}-m n-m^{2}\right)^{2}=1$.

Problem 3. We define the recurrence sequence $\left\{a_{n}\right\}_{n \geq 1}$ given by:

$$
a_{1}=1 \text { and } a_{n+1}=\frac{1+4 a_{n}+\sqrt{1+24 a_{n}}}{16} \text { for each } n \geq 1 .
$$

Find a_{2019}.
Problem 4. Let $1 \leq r \leq n$ be integers. We consider the set \mathcal{M} the set of all subsets of $\{1,2, \ldots, n\}$ consisting of exactly r elements. For each $S \in \mathcal{M}$, we let m_{S} be the smallest element contained in S. Find the arithmetic mean of all m_{S} (for $S \in \mathcal{M}$).

