PUTNAM PRACTICE SET 9

PROF. DRAGOS GHIOCA

Problem 1. Let S be the set of real numbers which is closed under multiplication, i.e., if $a, b \in S$ then $a b \in S$. Let T and U be disjoint subsets of S whose union is S. Given that the product of 3 elements of T (not necessarily distinct) is also contained in T, and similarly, the product of 3 elements of U is also contained in U, the prove that at least one of the two sets T or U is closed under multiplication.

Problem 2. Let $x_{1}(t), \ldots, x_{n}(t)$ be differentiable functions satisfying the following system of differential equations:

$$
x_{i}^{\prime}(t)=\sum_{j=1}^{n} a_{i, j} x_{j}(t),
$$

for given positive real numbers $a_{i, j}$. If

$$
\lim _{t \rightarrow \infty} x_{i}(t)=0 \text { for each } i=1, \ldots, n,
$$

then prove that the functions $x_{1}(t), \ldots, x_{n}(t)$ are linearly dependent, i.e., there exist constants c_{1}, \ldots, c_{n} (not all equal to 0) such that

$$
\sum_{i=1}^{n} c_{i} x_{i}(t)=0
$$

Problem 3. Let p be a prime number greater than 3 and let $k=\left[\frac{2 p}{3}\right]$, where $[z]$ denotes (as always) the integer part of the real number z (i.e., the largest integer less than or equal to z). Prove that p^{2} divides $\sum_{i=1}^{k}\binom{p}{i}$.

Problem 4. Let c be a positive real number. Find all continuous functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ with the property that for each real number x, we have that $f(x)=$ $f\left(x^{2}+c\right)$.

