PUTNAM PRACTICE SET 6

PROF. DRAGOS GHIOCA

Problem 1. Let a and s be real numbers satisfying the following properties:

• $0 < a \leq 1$; and

• s > 0, but $s \neq 1$. Prove that $\frac{1-s^a}{1-s} \le (1+s)^{a-1}$.

Problem 2. Let S be the set of all real numbers of the form $\frac{m+n}{\sqrt{m^2+n^2}}$ where m and n are positive integers. Prove that for each two distinct elements u < v contained in S, there exists another element $w \in S$ such that u < w < v.

Problem 3. We consider a set S of finitely many disks in the cartesian plane (of arbitrary centers and arbitrary radii) and we let A be the area of the region represented by their union. Prove that there exists a subset $S_0 \subseteq S$ satisfying the following two properties:

- any two disks from S_0 are disjoint.
- the sum of the areas of the disks from S_0 is at least $\frac{A}{9}$.

Problem 4. Let $\{u_n\}_{n\geq 1}$ be a recurrence sequence defined by $u_{n+1} = \frac{\sqrt[3]{64u_n+15}}{4}$ for each $n \ge 1$. Find $\lim_{n \to \infty} u_n$.