PUTNAM PRACTICE SET 6

PROF. DRAGOS GHIOCA

Problem 1. Let a and s be real numbers satisfying the following properties:

- $0<a \leq 1$; and
- $s>0$, but $s \neq 1$.

Prove that $\frac{1-s^{a}}{1-s} \leq(1+s)^{a-1}$.
Problem 2. Let S be the set of all real numbers of the form $\frac{m+n}{\sqrt{m^{2}+n^{2}}}$ where m and n are positive integers. Prove that for each two distinct elements $u<v$ contained in S, there exists another element $w \in S$ such that $u<w<v$.

Problem 3. We consider a set S of finitely many disks in the cartesian plane (of arbitrary centers and arbitrary radii) and we let A be the area of the region represented by their union. Prove that there exists a subset $S_{0} \subseteq S$ satisfying the following two properties:

- any two disks from S_{0} are disjoint.
- the sum of the areas of the disks from S_{0} is at least $\frac{A}{9}$.

Problem 4. Let $\left\{u_{n}\right\}_{n \geq 1}$ be a recurrence sequence defined by $u_{n+1}=\frac{\sqrt[3]{64 u_{n}+15}}{4}$ for each $n \geq 1$. Find $\lim _{n \rightarrow \infty} u_{n}$.

