PUTNAM PRACTICE SET 7

PROF. DRAGOS GHIOCA

Problem 1. Let $P \in \mathbb{C}[x]$ be a polynomial of degree $n \geq 1$ with the property that $P(k)=\frac{1}{\binom{n+1}{k}}$ for each $k=0,1, \ldots, n$. Find $P(n+1)$.

Solution. Using the Lagrange inetrpolation:

$$
\begin{aligned}
P(x) & \\
& =\prod_{i=0}^{n}(x-i) \cdot \sum_{k=0}^{n} \frac{P(k) \cdot \prod_{j \neq k}(k-j)^{-1}}{x-k} \\
& =\prod_{i=0}^{n}(x-i) \cdot \sum_{k=0}^{n} \frac{P(k)}{(-1)^{n-k}(k-1)!\cdot(n-k)!\cdot(x-k)}
\end{aligned}
$$

and so,

$$
\begin{aligned}
P(n+1) & \\
& =(n+1)!\cdot \sum_{k=0}^{n} \frac{k!\cdot(n+1-k)!}{(n+1)!\cdot(-1)^{n-k} \cdot k!\cdot(n-k)!\cdot(n+1-k)} \\
& =\sum_{k=0}^{n}(-1)^{n-k} \\
& =\frac{1+(-1)^{n}}{2}
\end{aligned}
$$

Problem 2. Find the maximum value for $m^{2}+n^{2}$ where $1 \leq m, n \leq 2019$ and moreover $\left(n^{2}-m n-m^{2}\right)^{2}=1$.

Solution. First we observe that if $1 \leq n \leq m$, then

$$
\left|n^{2}-n m-m^{2}\right| \geq m^{2} \geq 1
$$

with equality only if $(m, n)=(1,1)$. So, $n>m$ unless $(m, n)=(1,1)$. Next, we observe that if we dneote by S the set of all pairs (m, n) satisfying the given relation, then $(m, n) \in S \backslash\{(1,1)\}$ yields that $(n-m, m) \in S$ because

$$
m^{2}-(n-m) m-(n-m)^{2}=m^{2}+n m-n^{2}
$$

Hence, starting with any element in S, after finitely many steps we arrive at the pair $(1,1)$. Conversely, in order to generate any pair $(m, n) \in S$ we can start from $(1,1)$ and then apply finitely many times the transformation

$$
(a, b) \mapsto(b, a+b)
$$

So, this means that for any positive integer ℓ, we have that $\left(F_{\ell}, F_{\ell+1}\right)$ are all the elements in S, where $\left\{F_{\ell}\right\}$ is the Fibonacci sequence. So, the largest value for
$m^{2}+n^{2}$ is obtained by determining the largest ℓ such that $F_{\ell+1} \leq 2019$. We have that

$$
\begin{gathered}
F_{0}=0 ; F_{1}=F_{2}=1 ; F_{3}=2 ; F_{4}=3 ; F_{5}=5 \\
F_{6}=8 ; F_{7}=13 ; F_{8}=21 ; F_{9}=34 \\
F_{10}=55 ; F_{11}=89 ; F_{12}=144 ; F_{13}=233 \\
F_{14}=377 ; F_{15}=610 ; F_{16}=987 \\
F_{17}=1597 \text { and } F_{18}=2584 .
\end{gathered}
$$

Hence the largest value is obtained for $\ell=16$ and so, the largest value for $m^{2}+n^{2}$ is $987^{2}+1597^{2}$.

Problem 3. We define the recurrence sequence $\left\{a_{n}\right\}_{n \geq 1}$ given by:

$$
a_{1}=1 \text { and } a_{n+1}=\frac{1+4 a_{n}+\sqrt{1+24 a_{n}}}{16} \text { for each } n \geq 1 .
$$

Find a_{2019}.
Solution. We compute

$$
a_{2}=\frac{1+4+\sqrt{25}}{16}=\frac{5}{8}
$$

and then

$$
a_{3}=\frac{1+\frac{5}{2}+\sqrt{16}}{16}=\frac{15}{32}
$$

and also

$$
a_{4}=\frac{1+\frac{15}{8}+\sqrt{\frac{49}{4}}}{16}=\frac{51}{128}
$$

and just to make sure the pattern holds:

$$
a_{4}=\frac{1+\frac{51}{32}+\sqrt{\frac{169}{16}}}{16}=\frac{119}{64} .
$$

So, we let $1+24 a_{n}=b_{n}^{2}$ and thus

$$
\frac{b_{n+1}^{2}-1}{24}=a_{n+1}=\frac{1+\frac{b_{n}^{2}-1}{6}+b_{n}}{16}=\frac{b_{n}^{2}+6 b_{n}+5}{96}
$$

and so,

$$
4 b_{n+1}^{2}-4=b_{n}^{2}+6 b_{n}+5
$$

and thus

$$
\left(2 b_{n+1}\right)^{2}=\left(b_{n}+3\right)^{2}
$$

So, $b_{n+1}=\frac{b_{n}+3}{2}$, which (knowing that $b_{1}=5$) leads us to

$$
b_{n+1}-3=\frac{b_{n}-3}{2}=\frac{b_{1}-3}{2^{n}}=\frac{1}{2^{n-1}} .
$$

Therefore

$$
a_{n}=\frac{b_{n}^{2}-1}{24}=\frac{8+\frac{3}{2^{n-3}}+\frac{1}{2^{2 n-4}}}{24}=\frac{1}{3}+\frac{1}{2^{n}}+\frac{1}{3 \cdot 2^{2 n-1}} .
$$

Problem 4. Let $1 \leq r \leq n$ be integers. We consider the set \mathcal{M} the set of all subsets of $\{1,2, \ldots, n\}$ consisting of exactly r elements. For each $S \in \mathcal{M}$, we let
m_{S} be the smallest element contained in S. Find the arithmetic mean of all m_{S} (for $S \in \mathcal{M}$).

Solution. There are $\binom{n}{r}$ elements in \mathcal{M}. Now, an element is the smallest in a set with r elements has to be at most $n-r+1$. Now, for each $i \in\{1, \ldots, n-r+1\}$, there are precisely $\binom{n-i}{r-1}$ sets for which i is the smallest element in that set. So, the arithmetic mean of all m_{S} is

$$
\begin{aligned}
\frac{\sum_{i=1}^{n-r+1} i \cdot\binom{n-i}{r-1}}{\binom{n}{r}} & \\
& =\frac{(n+1) \cdot \sum_{i=1}^{n-r+1}\binom{n-i}{r-1}-\sum_{i=1}^{n-r+1}(n-i+1) \cdot\binom{n-i}{r-1}}{\frac{n!}{r!(n-r)!}} \\
& =\frac{(n+1) \cdot\binom{n}{r}-r \cdot \sum_{i=1}^{n-r+1}\binom{n-i+1}{r}}{\frac{n!}{r!(n-r)!}} \\
& =\frac{\frac{(n+1)!}{r!(n-r)!}-\frac{r \cdot(n+1)!}{(r+1)!(n-r)!}}{n!} \\
& =(n+1)-\frac{r(n+r)!}{r+1} \\
& =\frac{n+1}{r+1} .
\end{aligned}
$$

