The University of British Columbia Department of Mathematics Qualifying Examination—Algebra

September 2022

1. (8 points) Find the shortest distance from x to $U = \operatorname{span}\{u_1, u_2\} \subseteq \mathbb{R}^4$ where

$$u_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \qquad u_2 = \begin{bmatrix} 2\\0\\2\\0 \end{bmatrix} \qquad x = \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}.$$

2. (8 points) Let A be a real 3×3 matrix and suppose that the vectors

[1]		[1]		$\boxed{2}$		$\begin{bmatrix} 0 \end{bmatrix}$
1	,	2	,	1	,	0
0		0		0		1

are eigenvectors of A. Show that A is symmetric.

- 3. (14 points) Recall the matrix norm $||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$.
 - (a) (7 points) Let A be an $n \times n$ real matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$, and singular values $\sigma_1, \ldots, \sigma_n$. What is ||A||? Justify your answer.
 - (b) (7 points) Determine the matrix norm ||A|| for the matrix

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 6 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}.$$

In this section, you can use any theorem or fact from group theory, commutative algebra, Galois theory, etc. without proof as long as you state it clearly.

- 4. (8 points) Let N be the submodule of \mathbb{Z}^3 generated by the vectors $\langle 2, 2, 4 \rangle$, $\langle 4, -6, 12 \rangle$, and $\langle 2, -8, 8 \rangle$.
 - (a) (2 points) Give the definition of a *free* module over \mathbb{Z} .
 - (b) Is N a free module? If yes, find the rank of N.
 - (c) Find the quotient \mathbb{Z}^3/N .
- 5. (10 points) Assume R is a commutative ring with 1. Recall that an element $x \in R$ is called *nilpotent* if $x^n = 0$ for some $n \in \mathbb{Z}^+$.
 - (a) Prove that the set of nilpotent elements forms an ideal, called the *nilradical* $\mathcal{N}(R)$.
 - (b) Prove that the following are equivalent:
 - (i) R has exactly one prime ideal
 - (ii) every element of R is either nilpotent or a unit
 - (iii) $R/\mathcal{N}(R)$ is a field
- 6. (12 points) (a) List all the groups of order 6 up to isomorphism (with proof that the list is exhaustive; you can use the theorems of group theory without proof).
 - (b) Find the Galois group of the splitting field of the polynomial $f(X) = X^3 7$ over \mathbb{Q} .
 - (c) Is $\mathbb{Q}(7^{1/3})$ Galois over \mathbb{Q} ?