The University of British Columbia Department of Mathematics Qualifying Examination-Algebra

September 2022

1. (8 points) Find the shortest distance from x to $U=\operatorname{span}\left\{u_{1}, u_{2}\right\} \subseteq \mathbb{R}^{4}$ where

$$
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \quad u_{2}=\left[\begin{array}{l}
2 \\
0 \\
2 \\
0
\end{array}\right] \quad x=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]
$$

2. (8 points) Let A be a real 3×3 matrix and suppose that the vectors

$$
\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

are eigenvectors of A. Show that A is symmetric.
3. (14 points) Recall the matrix norm $\|A\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}$.
(a) (7 points) Let A be an $n \times n$ real matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, and singular values $\sigma_{1}, \ldots, \sigma_{n}$. What is $\|A\|$? Justify your answer.
(b) (7 points) Determine the matrix norm $\|A\|$ for the matrix

$$
A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
6 & 0 \\
0 & 5
\end{array}\right]\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right] .
$$

In this section, you can use any theorem or fact from group theory, commutative algebra, Galois theory, etc. without proof as long as you state it clearly.
4. (8 points) Let N be the submodule of \mathbb{Z}^{3} generated by the vectors $\langle 2,2,4\rangle,\langle 4,-6,12\rangle$, and $\langle 2,-8,8\rangle$.
(a) (2 points) Give the definition of a free module over \mathbb{Z}.
(b) Is N a free module? If yes, find the rank of N.
(c) Find the quotient \mathbb{Z}^{3} / N.
5. (10 points) Assume R is a commutative ring with 1. Recall that an element $x \in R$ is called nilpotent if $x^{n}=0$ for some $n \in \mathbb{Z}^{+}$.
(a) Prove that the set of nilpotent elements forms an ideal, called the nilradical $\mathcal{N}(R)$.
(b) Prove that the following are equivalent:
(i) R has exactly one prime ideal
(ii) every element of R is either nilpotent or a unit
(iii) $R / \mathcal{N}(R)$ is a field
6. (12 points) (a) List all the groups of order 6 up to isomorphism (with proof that the list is exhaustive; you can use the theorems of group theory without proof).
(b) Find the Galois group of the splitting field of the polynomial $f(X)=X^{3}-7$ over \mathbb{Q}.
(c) Is $\mathbb{Q}\left(7^{1 / 3}\right)$ Galois over \mathbb{Q} ?

