The University of British Columbia
 Department of Mathematics
 Qualifying Examination-Analysis
 September, 2023

Real analysis

1. (10 points) Let S be the part of the paraboloid $z=2-x^{2}-y^{2}$ above the cone $z=\sqrt{x^{2}+y^{2}}$, with upward orientation. Let

$$
\mathbf{F}=\left(\tan \sqrt{z}+\sin \left(y^{3}\right)\right) \mathbf{i}+e^{-x^{2}} \mathbf{j}+z \mathbf{k}
$$

Evaluate the flux integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.
2. (10 points) Let $f(x)=\sum_{n=1}^{\infty} \sin (n x) x^{n}$ for those x for which the series converges. Note that this is NOT a power series.
(a) (5 points) Show that f is defined and continuous on $(-1,1)$.
(b) (5 points) Show that f is differentiable and that f^{\prime} is continuous on $(-1,1)$
3. (10 points) Let $\left\{x_{n}\right\}$ be a sequence of positive real numbers, and define

$$
\alpha=\liminf _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}, \quad \beta=\limsup _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}} .
$$

(Note that $\alpha=\infty$ and/or $\beta=\infty$ may occur.)
(a) (2 points) Prove that if $\beta<1$, the sequence $\left\{x_{n}\right\}$ converges.
(b) (6 points) Prove that if $\alpha>1$, the sequence $\left\{x_{n}\right\}$ diverges.
(c) (1 point) Give an example of a convergent sequence $\left\{x_{n}\right\}$ for which $\alpha=1 / 2$.
(d) (1 point) Give an example of a divergent sequence $\left\{x_{n}\right\}$ for which $\beta=1$.

Complex analysis

4. (10 points) (a) Find

$$
\int_{C}\left(\frac{z}{(z-1)\left(z^{2}+1\right)}+\frac{e^{z}}{z-3 i}\right) d z
$$

where C is the counterclockwise oriented circle centred at $(0,0)$ of radius 2 .
(b) Find all values of z in \mathbb{C} such that $f(z)=2\left(x^{3}-3 x y^{2}+y\right)+i\left(3 y x^{2}-y^{3}\right)$ is analytic at z.
5. (10 points) (a) Find the domain of analyticity of $f(z)=\sqrt{\log (z+1)-\frac{\pi}{2}} i$, where the square root is given by the principal branch and $\log z$ is the principal branch of $\log z$. (b) Find $f(-i)$.
6. (10 points) Suppose that f is an analytic function on $H=\{z \in \mathbb{C}: \operatorname{Re}(z) \leq 0\}$ with

$$
f(-1)=f^{\prime}(-1)=0 \text { and } f^{\prime \prime}(-1)=\frac{i}{2}
$$

(a) Show that $g(z)=f(z) /(z+1)^{2}$ is analytic on H. Find the residue of g at -1 and the residue of $f /(z+1)^{3}$ at -1 .
(b) Suppose $|f(z)| \leq \frac{1}{2}|z+1|^{2}$. Show $\left|f\left(-\frac{3}{2}\right)\right| \leq \frac{9}{80}$.

