The University of British Columbia
 Department of Mathematics Qualifying Examination-Analysis

September 2022

Real analysis

1. (10 points) Let S be the part of the graph

$$
z=f(x, y)=x\left(5-x^{2}-y^{2}\right)^{317}
$$

that is inside the cylinder $Z: x^{2}+y^{2}=4$, with upward normal. Find the flux integral $J=\iint_{S} \operatorname{curl} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}$ for the vector field

$$
\vec{F}(x, y, z)=\left((z-x)^{10} y+e^{x+z}, x^{2} z,(z-x)^{10} y+e^{x+z}\right) .
$$

2. (10 points) Let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. Recall a sequence $a=\left(a_{k}\right)_{k \in \mathbb{N}_{0}}$ is in $\ell^{q}, 0<q<\infty$, if $\|a\|_{\ell q}=\left(\sum_{k \in \mathbb{N}_{0}}\left|a_{k}\right|^{q}\right)^{1 / q}$ is finite, $\|a\|_{\ell \infty}=\sup _{k \in \mathbb{N}_{0}}\left|a_{k}\right|$, and the convolution of two sequences $\left(a_{k}\right)$ and $\left(b_{k}\right)$ is defined by $(a * b)_{k}=\sum_{j=0}^{k} a_{j} b_{k-j}$ for $k \in \mathbb{N}_{0}$.
(a) Show that there is a sequence $\delta \in \ell^{1}$ such that $\delta * b=b$ for any $b \in \ell^{q}, 0<q \leq \infty$. Note: For functions in $L^{q}\left(\mathbb{R}^{n}\right)$, such a δ is only a distribution, not a function.
(b) Show that Young's convolution inequality

$$
\|a * b\|_{\ell^{q}} \leq\|a\|_{\ell^{1}}\|b\|_{\ell^{q}}
$$

fails if $q<1$. You may assume the existence of δ in Part (a).
3. (10 points) Let $K(x, y)$ be a continuous function for $x, y \in[0,1]$.
(a) If $f:[0,1] \rightarrow \mathbb{R}$ is continuous, prove that $F(x)=\int_{0}^{1} K(x, y) f(y) d y$ defines a continuous function F on $[0,1]$.
(b) Suppose $\alpha=\max _{x} \int_{0}^{1}|K(x, y)| d y<1$. Prove that there is a unique continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that

$$
f(x)=\sin x+\int_{0}^{1} K(x, y) f(y) d y \quad \text { for all } x \in[0,1]
$$

Complex analysis

4. (10 points) By using the Cauchy Residue Theorem, calculate the following integral. Justify your answer.

$$
\int_{0}^{\infty} \frac{\log x}{x^{2}+2 x+2} d x
$$

5. (10 points) (a) (4 points) Show that if $f(z)$ is analytic in an open and connected domain D and $|f(z)|=$ Constant in D, then $f(z)$ is constant.
(b) (6 points) Count the number of zeros (where each zero is counted as many times as its multiplicity) of $f(z)=z^{6}+3 z^{3}+4 z^{2}-1$ in the annulus $1 \leq|z| \leq 2$.
6. (10 points) (a) (2 points) Find the image of the region $S=\left\{z: 0 \leq \operatorname{Re}(z) \leq 1,-\frac{\pi}{2} \leq\right.$ $\operatorname{Im}(z) \leq \pi\}$ under the map $f(z)=e^{z}$.
(b) (8 points) Find a conformal map from the unbounded region outside the disks $\{|z+1| \leq 1\} \cup\{|z-1| \leq 1\}$ to the upper half plane $\{\operatorname{Im}(z)>0\}$.
