The University of British Columbia **Department of Mathematics** Qualifying Examination—Analysis

September 2022

Real analysis

1. (10 points) Let S be the part of the graph

$$z = f(x, y) = x(5 - x^2 - y^2)^{317}$$

that is inside the cylinder $Z: x^2 + y^2 = 4$, with upward normal. Find the flux integral $J = \iint_{S} \operatorname{curl} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$ for the vector field

$$\vec{F}(x,y,z) = \left((z-x)^{10}y + e^{x+z}, x^2z, (z-x)^{10}y + e^{x+z} \right).$$

- 2. (10 points) Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Recall a sequence $a = (a_k)_{k \in \mathbb{N}_0}$ is in ℓ^q , $0 < q < \infty$, if $||a||_{\ell^q} = (\sum_{k \in \mathbb{N}_0} |a_k|^q)^{1/q}$ is finite, $||a||_{\ell^{\infty}} = \sup_{k \in \mathbb{N}_0} |a_k|$, and the convolution of two sequences (a_k) and (b_k) is defined by $(a * b)_k = \sum_{j=0}^k a_j b_{k-j}$ for $k \in \mathbb{N}_0$.
 - (a) Show that there is a sequence $\delta \in \ell^1$ such that $\delta * b = b$ for any $b \in \ell^q$, $0 < q \leq \infty$. Note: For functions in $L^q(\mathbb{R}^n)$, such a δ is only a distribution, not a function.
 - (b) Show that Young's convolution inequality

$$||a * b||_{\ell^q} \le ||a||_{\ell^1} ||b||_{\ell^q}$$

fails if q < 1. You may assume the existence of δ in Part (a).

- 3. (10 points) Let K(x, y) be a continuous function for $x, y \in [0, 1]$.
 - (a) If $f: [0,1] \to \mathbb{R}$ is continuous, prove that $F(x) = \int_0^1 K(x,y) f(y) dy$ defines a continuous function F on [0, 1].
 - (b) Suppose $\alpha = \max_x \int_0^1 |K(x,y)| dy < 1$. Prove that there is a unique continuous function $f: [0,1] \to \mathbb{R}$ such that

$$f(x) = \sin x + \int_0^1 K(x, y) f(y) dy$$
 for all $x \in [0, 1]$.

Complex analysis

4. (10 points) By using the Cauchy Residue Theorem, calculate the following integral. Justify your answer.

$$\int_0^\infty \frac{\log x}{x^2 + 2x + 2} dx$$

- 5. (10 points) (a) (4 points) Show that if f(z) is analytic in an open and connected domain D and |f(z)| = Constant in D, then f(z) is constant.
 - (b) (6 points) Count the number of zeros (where each zero is counted as many times as its multiplicity) of $f(z) = z^6 + 3z^3 + 4z^2 1$ in the annulus $1 \le |z| \le 2$.
- 6. (10 points) (a) (2 points) Find the image of the region $S = \{z : 0 \le Re(z) \le 1, -\frac{\pi}{2} \le Im(z) \le \pi\}$ under the map $f(z) = e^z$.
 - (b) (8 points) Find a conformal map from the unbounded region outside the disks $\{|z+1| \le 1\} \cup \{|z-1| \le 1\}$ to the upper half plane $\{Im(z) > 0\}$.