The University of British Columbia
 Department of Mathematics Qualifying Examination-Differential Equations

January 2022

1. (8 points) (a) (2 points) Find a basis for the space M_{2} of 2×2 matrices.
(b) (2 points) What is the dimension of M_{2} ?
(c) (2 points) Find a basis for the subspace D_{2} of diagonal 2×2 matrices.
(d) (2 points) What is the dimension of D_{2} ?
2. (12 points) Let $x_{1}=(-1,1)$ and $x_{2}=(1,0)$ and consider the sets $S_{1}, S_{2} \subset \mathbb{R}^{2}$ given by

$$
S_{1}=\left\{v: v^{T} x_{1}=0\right\}
$$

and

$$
S_{2}=\left\{v: v^{T} x_{2}=0\right\} .
$$

(a) (4 points) Find an expression for the projection operators P_{1} onto S_{1} and P_{2} onto S_{2}.
(b) (4 points) Let $y=(1,2)$. Compute $P_{2} y$, the projection of y onto S_{2}, and $P_{1} P_{2} y$, and $P_{2} P_{1} P_{2} y$.
(c) (4 points) Find $\lim _{n \rightarrow \infty}\left(P_{1} P_{2}\right)^{n} y$. Justify your answer.
3. (10 points) Let M be a square matrix of size $n \times n$ with distinct eigenvalues $\lambda_{1}>$ $\lambda_{2}>\ldots>\lambda_{n}$. Show that the determinant of M is the product of its eigenvalues: $\operatorname{det}(M)=\prod_{i=1}^{n} \lambda_{i}$.
4. (10 points) (a) [7 points] Let n be a non-negative integer. Legendre's differential equation is

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0, \quad-1 \leq x \leq 1
$$

and has the solution, $y(x)=P_{n}(x)$, which is regular at $x= \pm 1$ and satisfies

$$
P_{n}(1)=1 \quad \& \quad \int_{-1}^{1}\left[P_{n}(x)\right]^{2} d x=\frac{2}{2 n+1}
$$

Look for a solution to the differential equation with the form of a power series,

$$
y=\sum_{j=0}^{\infty} c_{j} x^{j}
$$

Establish the recurrence relation satisfied by the coefficients c_{j}, and thereby argue that the solutions $P_{n}(x)$ take form of polynomials of finite degree if $n=0,1,2, \ldots$ Hence find $P_{n}(x)$ for $n=0,1,2,3$.
(b) [3 points] Place Legendre's equation in Sturm-Liouville form, and then show that

$$
\int_{0}^{1} P_{n}(x) d x=\frac{P_{n}^{\prime}(0)}{n(n+1)}
$$

for $n>0$. Hence use Sturm-Liouville theory to establish that

$$
\operatorname{sgn}(x)=\sum_{n \text { odd }} \frac{(2 n+1) P_{n}^{\prime}(0)}{n(n+1)} P_{n}(x),
$$

where $\operatorname{sgn}(x)=1$ if $x>0, \operatorname{sgn}(x)=-1$ if $x<0$, and $\operatorname{sgn}(0)=0$.
5. (10 points) By either observing that $y(x)=x$ is a homogeneous solution to the differential equation or otherwise, solve the differential equation

$$
x^{2} y^{\prime \prime}-\alpha\left(x y^{\prime}-y\right)=x(1+x), \quad y(0)=y(1)=0
$$

where α is a positive parameter. Is the solution unique?
6. (10 points) Use separation of variables to solve Laplace's equation

$$
\frac{1}{r}\left(r u_{r}\right)_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0
$$

outside the unit disk, $r \geq 1$, subject to

$$
u(1, \theta)=\left\{\begin{array}{ll}
0 & \theta=0 \text { or } \pi \\
\pi / 2 & 0<\theta<\pi \\
-\pi / 2 & \pi<\theta<2 \pi
\end{array} .\right.
$$

Using

$$
\frac{1}{2} \ln \left(\frac{1+\psi}{1-\psi}\right)=\sum_{n>0, n \text { odd }} \frac{\psi^{n}}{n}
$$

sum the series for $u(r, \theta)$, and hence write down a compact logarithmic expression for the solution.

Page 3

