The University of British Columbia Department of Mathematics Qualifying Examination-Differential Equations

January 2023

1. (10 points) You are attempting to solve for x_{1}, x_{2}, x_{3} in the matrix equation $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & -2 \\
1 & 2 & -2 \\
1 & 2 & 0
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
3 \\
2 \\
1 \\
0
\end{array}\right] .
$$

First, find the projection $\hat{\mathbf{b}}$ on the column space of A. Then, solve the new system $A \mathbf{x}=\hat{\mathbf{b}}$ for x_{1}, x_{2}, x_{3}.
2. (10 points) Let A be an $n \times n$ diagonalizable matrix. Show that A and A^{T} are similar, i.e., there exists an invertible matrix M such that $A^{T}=M A M^{-1}$.
3. (10 points) Let A be a real $n \times n$ matrix such that $\|A \mathbf{v}\|=\|\mathbf{v}\|$ for all $\mathbf{v} \in \mathbb{R}^{n}$. Show that A is orthogonal.
4. (10 points) IVP-ODE problems
(a) [5 points] Find the explicit solution $y(x)$ to the following IVP:

$$
y^{\prime}-\tan (x) y=3 x+1, \quad x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \quad y(0)=1 .
$$

(b) [5 points] Find the explicit solution $y(t)$ as a function of $k \in \mathbb{R}$ to the following IVP:

$$
y^{\prime \prime}-y^{\prime}-2 y=120 e^{-t}, \quad y(0)=215, \quad y^{\prime}(0)=k
$$

Then, determine the value of k for which $\lim _{t \rightarrow \infty} y(t)=0$.
5. (10 points) We consider the Laplace equation on a circular wedge with the following boundary conditions:

$$
\begin{array}{rll}
\Delta u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0 & , \quad 0 \leq r \leq a \quad, \quad 0 \leq \theta \leq \pi / 4 \\
u(r, 0)=1 & , & u_{\theta}(r, \pi / 4)=0 \\
u(a, \theta)=\sin (2 \theta)+1 & , & u \text { remains finite as } r \rightarrow 0
\end{array}
$$

Here $a>0$ is the radius of the wedge.
(a) [3 points] We seek a solution of the form $u(r, \theta)=A+v(r, \theta)$ where $A \in \mathbb{R}$. Determine A and the problem solved by the function $v(r, \theta)$.
(b) [7 points] Find $v(r, \theta)$ using the method of separation of variables and give the complete solution $u(r, \theta)$.
Tip: the eigenvalues and eigenfunctions of the 1D negative Laplacian operator $-\Delta$ over $x \in[0, L]$ with homogeneous Dirichlet boundary condition at $x=0$ and homogeneous Neumann boundary condition at $x=L$ are $\lambda_{n}=\left(\frac{(2 n-1) \pi}{2 L}\right)^{2}$ and $\sin \left(\frac{(2 n-1) \pi}{2 L} x\right)$, respectively, for $n=1,2, \ldots$
6. (10 points) Convolution and Laplace transform

We define the convolution of two functions $f(t)$ and $g(t)$ as

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

(a) [5 points] Prove the convolution theorem for Laplace tranforms

$$
\mathcal{L}\{(f * g)(t)\}(s)=F(s) G(s),
$$

where $F(s)=\mathcal{L}\{f(t)\}(s)$ and $G(s)=\mathcal{L}\{g(t)\}(s)$.
(b) [5 points] Use the convolution theorem (and not any other method) to calculate the inverse Laplace transform of $H(s)=\frac{a}{s^{2}\left(s^{2}+a^{2}\right)}$ for any $a \in \mathbb{R}, a \neq 0$.

Help with Laplace transforms

$f(t)=\mathcal{L}^{-1}\{F(s)\}(t)$	$F(s)=\mathcal{L}\{f(t)\}(s)$
1. $\sin (x t)$	$\frac{x}{s^{2}+x^{2}}, \quad s>0$
2. $\cos (x t)$	$\frac{s}{s^{2}+x^{2}}, \quad s>0$
3. t^{n}, n positive integer	$\frac{n!}{s^{n+1}}, \quad s>0$

Page 3

