The University of British Columbia Department of Mathematics Qualifying Examination-Differential Equations

September 2022

1. (8 points) Find the shortest distance from x to $U=\operatorname{span}\left\{u_{1}, u_{2}\right\} \subseteq \mathbb{R}^{4}$ where

$$
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \quad u_{2}=\left[\begin{array}{l}
2 \\
0 \\
2 \\
0
\end{array}\right] \quad x=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right] .
$$

2. (8 points) Let A be a real 3×3 matrix and suppose that the vectors

$$
\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

are eigenvectors of A. Show that A is symmetric.
3. (14 points) Recall the matrix norm $\|A\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}$.
(a) (7 points) Let A be an $n \times n$ real matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, and singular values $\sigma_{1}, \ldots, \sigma_{n}$. What is $\|A\|$? Justify your answer.
(b) (7 points) Determine the matrix norm $\|A\|$ for the matrix

$$
A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
6 & 0 \\
0 & 5
\end{array}\right]\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right] .
$$

4. (10 points) We consider the following ODE initial-value problem:

$$
\begin{equation*}
x^{\prime \prime}+\gamma x=f(t), \quad x(0)=0, \quad x^{\prime}(0)=1, \tag{1}
\end{equation*}
$$

where γ is a non-zero positive parameter and $f(t)$ is an external forcing.
(a) [5 points] We assume that $f(t)$ is a switch on-switch off function (also known as rectangular function or top hat function) between $t=a$ and $t=b>a$ and of intensity $\frac{1}{b-a}$ shown in the picture below.

Solve the problem using Laplace transform and write the solution as a function of γ, a and b. Denote this solution $x_{S}(t)$.
(b) [2 points] We assume that $f(t)=\delta(t-a)$ is a delta Dirac function at $t=a$. Solve the problem using Laplace transform and write the solution as a function of γ and a. Denote this solution $x_{D}(t)$.
(c) [3 points] Take $\gamma=1$ for simplicity. Using $x_{S}(t)$ and $x_{D}(t)$ from question (a) and question (b) respectively, establish that

$$
\lim _{b \rightarrow a} \frac{\cos (t-a) u(t-a)-\cos (t-b) u(t-b)}{b-a}=\delta(t-a)-\sin (t-a) u(t-a)
$$

where $u(t-x)$ is the Heaviside function defined as

$$
u=\left\{\begin{array}{l}
0, t<x \\
1, t \geq x
\end{array}\right.
$$

Help with Laplace transforms

$f(t)=\mathcal{L}^{-1}\{F(s)\}(t)$	$F(s)=\mathcal{L}\{f(t)\}(s)$
1. $\sin (x t)$	$\frac{x}{s^{2}+x^{2}}, \quad s>0$
2. $\cos (x t)$	$\frac{s}{s^{2}+x^{2}}, \quad s>0$
3. $u(t-x) f(t-x)$	$e^{-x s} F(s)$
4. $f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$

5. (10 points) (a) [7 points] Apply the method of separation of variables to determine the solution to the one dimensional time-dependent heat equation subject to the following periodic boundary conditions and initial condition:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \text { for } t>0, \quad 0 \leq x \leq 2, \\
& \mathrm{BC}: \quad u(0, t)=u(2, t), \quad \text { and } \frac{\partial u(0, t)}{\partial x}=\frac{\partial u(2, t)}{\partial x} \\
& \text { IC: } \quad u(x, 0)=f(x)= \begin{cases}1-x & \text { if } 0 \leq x<1 \\
0 & \text { if } 1 \leq x<2\end{cases}
\end{aligned}
$$

(b) [3 points] Use the Fourier series you found in (a) and by evaluating the value of the periodic extension of $f(x)$ at $x=0$, find the sum of the infinite series

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}
$$

6. (10 points) We consider the following Poisson problem in the bounded 2-D domain Ω with Neumann boundary conditions on the boundary of Ω denoted by $\partial \Omega$:

$$
\begin{gathered}
\Delta u=f \quad \text { in } \Omega \\
\frac{\partial u}{\partial n}=g \quad \text { on } \partial \Omega
\end{gathered}
$$

where n is the unit normal vector over $\partial \Omega, f$ and g are two functions of the spatial coordinates.
(a) [2 points] Discuss the uniqueness of the solution u.
(b) [3 points] Find a condition on f and g for the problem to be well-posed (and therefore for the solution u to exist).
(c) [5 points] We take $\Omega=[0, \pi] \times[0, \pi], f=\delta\left(x_{1}-\overline{x_{1}}, x_{2}-\overline{x_{2}}\right)$ and $g=0$, where δ is the delta Dirac function centered at $\left(x_{1}, x_{2}\right)=\left(\overline{x_{1}}, \overline{x_{2}}\right) \in[0, \pi] \times[0, \pi]$. Find the solution $u\left(x_{1}, x_{2}\right)$ by using an eigenfunction expansion and separation of variables.

